The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 87-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an idempotent semiring of continuous $[0,1]$-valued functions defined on a compact $X$ with the usual multiplication and addition $\max$. We prove the determinability of $X$ by the lattice of ideals and the lattice of congruencies of the indicated semiring.
Keywords: semiring, unit interval, compact, semiring of continuous functions, lattice of ideals, lattice of congruencies.
@article{IVM_2012_1_a11,
     author = {E. M. Vechtomov and E. N. Lubyagina},
     title = {The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--91},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a11/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - E. N. Lubyagina
TI  - The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 87
EP  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_1_a11/
LA  - ru
ID  - IVM_2012_1_a11
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A E. N. Lubyagina
%T The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 87-91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_1_a11/
%G ru
%F IVM_2012_1_a11
E. M. Vechtomov; E. N. Lubyagina. The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 87-91. http://geodesic.mathdoc.fr/item/IVM_2012_1_a11/

[1] Varankina V. I., Vechtomov E. M., Semenova I. A., “Polukoltsa nepreryvnykh neotritsatelnykh funktsii: delimost, idealy, kongruentsii”, Fundament. i prikl. matem., 4:2 (1998), 493–510 | MR | Zbl

[2] Gillman L., Jerison M., Rings of continuous functions, Springer-Verlag, N.Y., 1976 | MR | Zbl

[3] Lubyagina E. N., “Maksimalnye idealy v polukoltsakh nepreryvnykh funktsii so znacheniyami v edinichnom otrezke”, Lobachevskie chteniya–2010, Materialy Devyatoi molodezhnoi nauchn. shk.-konf., Tr. Matem. tsentra im. N. I. Lobachevskogo, 40, Kazan, 2010, 206–211

[4] Sikorskii R., Bulevy algebry, Mir, M., 1969 | MR

[5] Vechtomov E. M., Chuprakov D. V., “Psevdodopolneniya v reshetke kongruentsii polukolets nepreryvnykh funktsii”, Vestnik Syktyvkarsk. un-ta. Ser. 1: Matem. Mekhan. Informatika, 2009, no. 9, 3–17 | MR