Regular semiartinian rings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the structure of rings over which every right module is an essential extension of a semisimple module by an injective one. A ring $R$ is called a right $\max$-ring if every nonzero right $R$-module has a maximal submodule. We describe normal regular semiartinian rings whose endomorphism ring of the minimal injective cogenerator is a $\max$-ring.
Keywords:
semiartinian rings, $SI$-rings, $\max$-rings.
Mots-clés : injective module
Mots-clés : injective module
@article{IVM_2012_1_a0,
author = {A. N. Abyzov},
title = {Regular semiartinian rings},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--11},
publisher = {mathdoc},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a0/}
}
A. N. Abyzov. Regular semiartinian rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2012_1_a0/