Regular semiartinian rings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of rings over which every right module is an essential extension of a semisimple module by an injective one. A ring $R$ is called a right $\max$-ring if every nonzero right $R$-module has a maximal submodule. We describe normal regular semiartinian rings whose endomorphism ring of the minimal injective cogenerator is a $\max$-ring.
Keywords: semiartinian rings, $SI$-rings, $\max$-rings.
Mots-clés : injective module
@article{IVM_2012_1_a0,
     author = {A. N. Abyzov},
     title = {Regular semiartinian rings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - Regular semiartinian rings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 3
EP  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_1_a0/
LA  - ru
ID  - IVM_2012_1_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T Regular semiartinian rings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 3-11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_1_a0/
%G ru
%F IVM_2012_1_a0
A. N. Abyzov. Regular semiartinian rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2012_1_a0/