Projective-differential properties of point correspondences between three hypersurfaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2012), pp. 16-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the point correspondences between three hypersurfaces in projective spaces with the help of G. F. Laptev invariant methods. We establish main equations and geometrical objects of correspondences. We construct invariant normalizations of hypersurfaces and main tensors of correspondences, and describe a connection of the studied correspondences with multidimensional $3$-webs.
Mots-clés : hypersurface
Keywords: point correspondence, invariant normalizations, multidimensional $3$-webs.
@article{IVM_2012_12_a1,
     author = {V. S. Bolodurin},
     title = {Projective-differential properties of point correspondences between three hypersurfaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--29},
     publisher = {mathdoc},
     number = {12},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_12_a1/}
}
TY  - JOUR
AU  - V. S. Bolodurin
TI  - Projective-differential properties of point correspondences between three hypersurfaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 16
EP  - 29
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_12_a1/
LA  - ru
ID  - IVM_2012_12_a1
ER  - 
%0 Journal Article
%A V. S. Bolodurin
%T Projective-differential properties of point correspondences between three hypersurfaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 16-29
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_12_a1/
%G ru
%F IVM_2012_12_a1
V. S. Bolodurin. Projective-differential properties of point correspondences between three hypersurfaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2012), pp. 16-29. http://geodesic.mathdoc.fr/item/IVM_2012_12_a1/

[1] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl

[2] Akivis M. A., “O lokalno-differentsiruemoi kvazigruppe i tri-tkani, kotorye opredelyayutsya troikoi giperpoverkhnostei”, Sib. mat. zhurn., 14:3 (1973), 467–474 | MR | Zbl

[3] Norden A. P., Prostranstva affinnoi svyaznosti, GITTL, M.–L., 1950 | MR

[4] Ryzhkov V. V., “Differentsialnaya geometriya tochechnykh sootvetstvii mezhdu dvumya prostranstvami”, Itogi nauki, Geometriya 1963, Inst. nauch. inf. AN SSSR, 1965, 65–107 | MR

[5] Bolodurin V. S., “K invariantnoi teorii tochechnykh sootvetstvii trekh proektivnykh prostranstv”, Izv. vuzov. Matem., 1982, no. 5, 9–15 | MR | Zbl

[6] Bolodurin V. S., “O nekotorykh svoistvakh tochechnykh sootvetstvii mezhdu giperpoverkhnostyami proektivnykh prostranstv”, Izv. vuzov. Matem., 1969, no. 2, 3–13 | MR | Zbl

[7] Bolodurin V. S., “O tochechnykh sootvetstviyakh mezhdu giperpoverkhnostyami proektivnykh prostranstv”, Tr. geometr. semin., 2, VINITI, 1969, 55–79 | MR | Zbl

[8] Casanova G., “La notion de pôle harmonique”, Rev. Math. Spec., 65:6 (1955), 437–440

[9] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Tr. geometr. semin., 2, VINITI, 1969, 7–31 | MR | Zbl

[10] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948