A $(3,3)$-homogeneous quantum logic with~$18$ atoms.~I
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2012), pp. 72-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quantum logic is called $(m,n)$-homogeneous if any its atom is contained exactly in $m$ maximal (with respect to inclusion) orthogonal sets of atoms (we call them blocks), and every block contains exactly $n$ elements. We enumerate atoms by natural numbers. For each block $\{i,j,k\}$ we use the abbreviation $i$-$j$-$k$. Every such logic has the following $7$ initial blocks $B_1,\dots,B_7$: $1$-$2$-$3$, $1$-$4$-$5$, $1$-$6$-$7$, $2$-$8$-$9$, $2$-$10$-$11$, $3$-$12$-$13$, and $3$-$14$-$15$. For an $18$-atom logic the arrangements of the rest atoms $16,17$, and $18$ is important. We consider the case when they form a loop of order $4$ in one of layers composed of initial blocks, for example, $l_4$: $3$-$14$-$15$, $15$-$16$-$17$, $17$-$18$-$13$, and $13$-$12$-$3$. We prove that there exist (up to isomorphism) only $5$ such logics, and describe pure states and automorphism groups for them.
Keywords: quantum logic, homogeneous quantum logic, $(3,3)$-homogeneous logic, atom, block, pure state
Mots-clés : automorphism group.
@article{IVM_2012_11_a6,
     author = {F. F. Sultanbekov},
     title = {A $(3,3)$-homogeneous quantum logic with~$18$ {atoms.~I}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--78},
     publisher = {mathdoc},
     number = {11},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_11_a6/}
}
TY  - JOUR
AU  - F. F. Sultanbekov
TI  - A $(3,3)$-homogeneous quantum logic with~$18$ atoms.~I
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 72
EP  - 78
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_11_a6/
LA  - ru
ID  - IVM_2012_11_a6
ER  - 
%0 Journal Article
%A F. F. Sultanbekov
%T A $(3,3)$-homogeneous quantum logic with~$18$ atoms.~I
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 72-78
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_11_a6/
%G ru
%F IVM_2012_11_a6
F. F. Sultanbekov. A $(3,3)$-homogeneous quantum logic with~$18$ atoms.~I. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2012), pp. 72-78. http://geodesic.mathdoc.fr/item/IVM_2012_11_a6/

[1] Sultanbekov F. F., Bulevy algebry i kvantovye logiki, Izd-vo Kazansk. un-ta, Kazan, 2007

[2] Pták P., Pulmannová S., Orthomodular structures as quantum logics, Kluwer Academic Publishers, Dordrecht–Boston–London, 1991 | MR | Zbl

[3] Sultanbekov F. F., “Zaryady i avtomorfizmy odnogo klassa konechnykh logik mnozhestv”, Konstruktivnaya teoriya funktsii i funkts. analiz, 8, Izd-vo Kazansk. un-ta, Kazan, 1992, 57–68 | MR

[4] Greechie R. J., “Orthomodular lattices admiting no states”, J. Comb. Theory Ser. A, 10:2 (1971), 119–132 | DOI | MR | Zbl

[5] Kalmbach G., Orthomodular lattices, Academic Press, London, 1983 | MR | Zbl

[6] Harding J., “Decompositions in quantum logic”, Trans. Amer. Math. Soc., 348:5 (1996), 1839–1862 | DOI | MR | Zbl

[7] Ovchinnikov P. G., “Ob odnorodnykh konechnykh logikakh Grichi, dopuskayuschikh dvuznachnoe sostoyanie”, Teor. funkts., prilozh. i smezhnye voprosy, Kazansk. gos. un-t, Kazan, 1999, 167–168

[8] Sultanbekov F. F., “Automorphism groups of small $(3,3)$-homogeneous logics”, Int. J. Theor. Phys., 49:12 (2010), 3271–3278 | DOI | MR | Zbl

[9] Sultanbekov F. F., “O $(3,3)$-odnorodnykh kvantovykh logikakh s $18$ atomami”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 43, Izd-vo “Kazansk. matem. ob-vo”, Kazan, 2011, 333–335