Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_11_a5, author = {R. B. Salimov and P. L. Shabalin}, title = {A homogeneous {Hilbert} problem with discontinuous coefficients and two-side curling at infinity of order~$1/2\leq\rho<1$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--71}, publisher = {mathdoc}, number = {11}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_11_a5/} }
TY - JOUR AU - R. B. Salimov AU - P. L. Shabalin TI - A homogeneous Hilbert problem with discontinuous coefficients and two-side curling at infinity of order~$1/2\leq\rho<1$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 67 EP - 71 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_11_a5/ LA - ru ID - IVM_2012_11_a5 ER -
%0 Journal Article %A R. B. Salimov %A P. L. Shabalin %T A homogeneous Hilbert problem with discontinuous coefficients and two-side curling at infinity of order~$1/2\leq\rho<1$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 67-71 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2012_11_a5/ %G ru %F IVM_2012_11_a5
R. B. Salimov; P. L. Shabalin. A homogeneous Hilbert problem with discontinuous coefficients and two-side curling at infinity of order~$1/2\leq\rho<1$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2012), pp. 67-71. http://geodesic.mathdoc.fr/item/IVM_2012_11_a5/
[1] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986 | MR | Zbl
[2] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1974, no. 6, 16–23 | MR
[3] Salimov R. B., Shabalin P. L., “K resheniyu zadachi Gilberta s beskonechnym indeksom”, Matem. zametki, 73:5 (2003), 724–734 | DOI | MR | Zbl
[4] Salimov R. B., Shabalin P. L., “Metod regulyarizuyuschego mnozhitelya dlya resheniya odnorodnoi zadachi Gilberta s beskonechnym indeksom”, Izv. vuzov. Matem., 2001, no. 4, 76–79 | MR | Zbl
[5] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. matem. o-va, Kazan, 2005
[6] Salimov R., Shabalin P., “The Riemann–Hilbert boundary value problem with a countable set of coefficient discontinuities and two-side curling at infinity of order less than $1/2$”, Operator Theory: Advances and Applications, 221, Springer, Basel, AG, 2012, 571–585 | MR
[7] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956