Two comparison criteria for scalar Riccati equations and their applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2012), pp. 20-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish two comparison criteria for scalar Riccati equations. On the base of these criteria we prove two coefficient criteria for the existence of solutions to Riccati equations (both tending to infinity and not). We generalize a part of the Lyapunov theorem on the Hill equation and establish solvability criteria for the Redheffer system.
Keywords: Riccati, Hill, Redheffer system, comparison criteria, dissipativity, conservativity, $p$-dissipativity, $p$-conservativity.
Mots-clés : Matheus equations
@article{IVM_2012_11_a1,
     author = {G. A. Grigoryan},
     title = {Two comparison criteria for scalar {Riccati} equations and their applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--35},
     publisher = {mathdoc},
     number = {11},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_11_a1/}
}
TY  - JOUR
AU  - G. A. Grigoryan
TI  - Two comparison criteria for scalar Riccati equations and their applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 20
EP  - 35
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_11_a1/
LA  - ru
ID  - IVM_2012_11_a1
ER  - 
%0 Journal Article
%A G. A. Grigoryan
%T Two comparison criteria for scalar Riccati equations and their applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 20-35
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_11_a1/
%G ru
%F IVM_2012_11_a1
G. A. Grigoryan. Two comparison criteria for scalar Riccati equations and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2012), pp. 20-35. http://geodesic.mathdoc.fr/item/IVM_2012_11_a1/

[1] Egorov A. I., Uravneniya Rikkati, Fizmatlit, M., 2001

[2] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[3] Stafford R. A., Heidel J. W., “A new comparison theorem for scalar Riccati equations”, Bull. Amer. Math. Soc., 80:4 (1974), 754–757 | DOI | MR | Zbl

[4] Sobol I. M., “Ob uravneniyakh Rikkati i privodimykh k nim lineinykh uravneniyakh vtorogo poryadka”, DAN SSSR, 65:3 (1949), 275–278 | MR | Zbl

[5] Sobol I. M., “Issledovanie asimptoticheskogo povedeniya reshenii lineinogo differentsialnogo uravneniya vtorogo poryadka pri pomoschi polyarnykh koordinat”, Matem. sb., 28(70):3 (1951), 707–714 | MR | Zbl

[6] Kondratev V. A., “Dostatochnye usloviya nekoleblemosti i koleblemosti reshenii uravneniya $y''(x)+p(x)y(x)=0$”, DAN SSSR, 113:4 (1957), 742–745

[7] Travis C. C., “Remarks on a comparison theorem for scalar Riccati equations”, Proc. Amer. Math. Soc., 52 (1975), 311–314 | DOI | MR | Zbl

[8] Liu W.-L., Li H.-J., “Oscillation criteria for second order linear differential equations with damping”, J. Appl. Analysis, 2:1 (1996), 105–118 | MR | Zbl

[9] Kwong M. K., “Integral criteria for second order linear oscillation”, Electronic J. Qualitative Theory Differ. Equat., 2006 (2006), 10, 18 pp. http://www.math.u-szeged.hu/ejqtde/ | MR

[10] Kamenev I. V., “Neobkhodimoe i dostatochnoe uslovie nekoleblemosti reshenii sistemy dvukh lineinykh uravnenii pervogo poryadka”, Matem. zametki, 16:2 (1974), 259–265 | MR | Zbl

[11] Bulgakov A. I., “O koleblemosti reshenii sistem differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 23:2 (1997), 207–317

[12] Erbe L. H., Kong Q. A., Ruan S., “Kamenev type theorems for second order matrix differential systems”, Proc. Amer. Math. Soc., 117:4 (1993), 957–962 | MR | Zbl

[13] Grigoryan G. A., “O dvukh priznakakh sravneniya dlya lineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 17:9 (2011), 1225–1240 | MR

[14] Zakhar-Itkin M. Kh., “Matrichnye differentsialnye uravneniya Rikkati i polugruppa drobno-lineinykh preobrazovanii”, UMN, 28:3 (1973), 83–120 | MR | Zbl

[15] Edvards R. E., A formal background to mathematics, Springer-Verlag, New York–Heidelberg–Berlin, 1980

[16] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[17] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964

[18] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, In. lit., M., 1953