Keywords: subalgebra lattices, minimal algebras.
@article{IVM_2012_10_a5,
author = {A. G. Gein},
title = {Finite-dimensional simple {Lie} algebras with a~subalgebra lattice of length~3},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {74--78},
year = {2012},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_10_a5/}
}
A. G. Gein. Finite-dimensional simple Lie algebras with a subalgebra lattice of length 3. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2012), pp. 74-78. http://geodesic.mathdoc.fr/item/IVM_2012_10_a5/
[1] Premet A. A., Semenov K. N., “Mnogoobraziya finitno approksimiruemykh algebr Li”, Matem. sb., 137(179):1 (1988), 103–113 | MR | Zbl
[2] Varea V. R., “Lie algebras whose proper subalgebras are either semisimple, abelian or almost-abelian”, Hiroshima Math. J., 24 (1994), 221–241 | MR | Zbl
[3] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR
[4] Gein A. G., “Modulyarnyi zakon i otnositelnye dopolneniya v reshetke podalgebr algebry Li”, Izv. vuzov. Matem., 1987, no. 3, 18–25 | MR | Zbl
[5] Zusmanovich P., Lie algebras with given properties of subalgebras and elements, Cornell University Library, 2011 , arXiv: http://justpasha.org/math/1105.4284
[6] Premet A. A., “O podalgebrakh Kartana $p$-algebr Li”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 788–800 | MR | Zbl
[7] Gein A. G., “Minimal noncommutative and minimal nonabelian algebras”, Commun. Algebra, 13:2 (1985), 305–328 | DOI | MR
[8] Elduque A., “A note on noncentral simple minimal nonabelian Lie algebras”, Commun. Algebra, 15:7 (1987), 1313–1318 | DOI | MR | Zbl