Finite-dimensional simple Lie algebras with a~subalgebra lattice of length~3
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2012), pp. 74-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lie algebras with a subalgebra lattice of length 2 are well-known. To study a subalgebra lattice of greater length, it is useful to get some information on Lie algebras with a subalgebra lattice of length 3. We show that a finite-dimensional simple Lie algebra over a field of characteristic 0 or a perfect field of prime characteristic greater than 5 whose subalgebra lattice has length 3 may be one of four types.
Mots-clés : simple Lie algebras
Keywords: subalgebra lattices, minimal algebras.
@article{IVM_2012_10_a5,
     author = {A. G. Gein},
     title = {Finite-dimensional simple {Lie} algebras with a~subalgebra lattice of length~3},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--78},
     publisher = {mathdoc},
     number = {10},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_10_a5/}
}
TY  - JOUR
AU  - A. G. Gein
TI  - Finite-dimensional simple Lie algebras with a~subalgebra lattice of length~3
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 74
EP  - 78
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_10_a5/
LA  - ru
ID  - IVM_2012_10_a5
ER  - 
%0 Journal Article
%A A. G. Gein
%T Finite-dimensional simple Lie algebras with a~subalgebra lattice of length~3
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 74-78
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_10_a5/
%G ru
%F IVM_2012_10_a5
A. G. Gein. Finite-dimensional simple Lie algebras with a~subalgebra lattice of length~3. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2012), pp. 74-78. http://geodesic.mathdoc.fr/item/IVM_2012_10_a5/

[1] Premet A. A., Semenov K. N., “Mnogoobraziya finitno approksimiruemykh algebr Li”, Matem. sb., 137(179):1 (1988), 103–113 | MR | Zbl

[2] Varea V. R., “Lie algebras whose proper subalgebras are either semisimple, abelian or almost-abelian”, Hiroshima Math. J., 24 (1994), 221–241 | MR | Zbl

[3] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[4] Gein A. G., “Modulyarnyi zakon i otnositelnye dopolneniya v reshetke podalgebr algebry Li”, Izv. vuzov. Matem., 1987, no. 3, 18–25 | MR | Zbl

[5] Zusmanovich P., Lie algebras with given properties of subalgebras and elements, Cornell University Library, 2011 , arXiv: http://justpasha.org/math/1105.4284

[6] Premet A. A., “O podalgebrakh Kartana $p$-algebr Li”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 788–800 | MR | Zbl

[7] Gein A. G., “Minimal noncommutative and minimal nonabelian algebras”, Commun. Algebra, 13:2 (1985), 305–328 | DOI | MR

[8] Elduque A., “A note on noncentral simple minimal nonabelian Lie algebras”, Commun. Algebra, 15:7 (1987), 1313–1318 | DOI | MR | Zbl