Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_10_a3, author = {A. G. Chentsov}, title = {Representation of attraction elements in abstract attainability problems with asymptotic constraints}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {45--59}, publisher = {mathdoc}, number = {10}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_10_a3/} }
TY - JOUR AU - A. G. Chentsov TI - Representation of attraction elements in abstract attainability problems with asymptotic constraints JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 45 EP - 59 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_10_a3/ LA - ru ID - IVM_2012_10_a3 ER -
A. G. Chentsov. Representation of attraction elements in abstract attainability problems with asymptotic constraints. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2012), pp. 45-59. http://geodesic.mathdoc.fr/item/IVM_2012_10_a3/
[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[2] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971 | MR
[3] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, In. lit., M., 1959, 263–267
[4] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970 | MR
[5] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[6] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum Publishing Corporation, New York–London–Moscow, 1996 | MR | Zbl
[7] Chentsov A. G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997 | MR | Zbl
[8] Chentsov A. G., “Konechno-additivnye mery i rasshireniya abstraktnykh zadach upravleniya”, Sovremennaya matematika i ee prilozh., 17, AN Gruzii, Institut kibernetiki, 2004, 3–153 | MR
[9] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovremennaya matematika i ee prilozh., 26, AN Gruzii, Institut kibernetiki, 2005, 119–150 | MR
[10] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matem. i mekhan. UrO RAN, 12, no. 1, Ekaterinburg, 2006, 216–241 | MR | Zbl
[11] Chentsov A. G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurtskogo un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 113–142
[12] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005
[13] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968 | MR
[14] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Izd-vo LKI, M., 2008 | MR
[15] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Vyssh. shkola, M., 1979 | Zbl
[16] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981 | MR
[17] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR | Zbl
[18] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. I, UGTU-UPI, Ekaterinburg, 2008
[19] Melentsov A. A., Baidosov V. A., Zmeev G. M., Elementy teorii mery i integrala, UrGU, Sverdlovsk, 1980
[20] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl
[21] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[22] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. II, UGTU-UPI, Ekaterinburg, 2010
[23] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 50, VINITI, 1989, 5–128 | MR | Zbl
[24] Chentsov A. G., “Konstruirovanie operatsii predelnogo perekhoda s ispolzovaniem ultrafiltrov izmerimykh prostranstv”, Avtomatika i telemekhanika, 2007, no. 11, 208–222 | MR | Zbl
[25] Chentsov A. G., “Rasshireniya abstraktnykh zadach o dostizhimosti: nesekventsialnaya versiya”, Tr. In-ta matem. i mekhan., 13, no. 2, 2007, 184–217
[26] Chentsov A. G., “Ultrafiltry izmerimykh prostranstv kak obobschennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matem. i mekhan., 17, no. 1, 2011, 268–293