Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 62-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the canonical expansion of an infinitesimal affine transformation of the second order tangent bundle with horizontal lift connection. We establish necessary and sufficient conditions under which a vector field is an infinitesimal affine transformation. We also construct the horizontal lift of a linear connection to a second orderWeil bundle.
Keywords: second order tangent bundle, linear connection, horizontal lift of a linear connection, second order Weil bundle.
Mots-clés : infinitesimal affine transformation
@article{IVM_2011_9_a6,
     author = {N. I. Manina and A. Ya. Sultanov},
     title = {Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--69},
     year = {2011},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_9_a6/}
}
TY  - JOUR
AU  - N. I. Manina
AU  - A. Ya. Sultanov
TI  - Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 62
EP  - 69
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_9_a6/
LA  - ru
ID  - IVM_2011_9_a6
ER  - 
%0 Journal Article
%A N. I. Manina
%A A. Ya. Sultanov
%T Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 62-69
%N 9
%U http://geodesic.mathdoc.fr/item/IVM_2011_9_a6/
%G ru
%F IVM_2011_9_a6
N. I. Manina; A. Ya. Sultanov. Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 62-69. http://geodesic.mathdoc.fr/item/IVM_2011_9_a6/

[1] Egorov I. P., “Gruppy dvizhenii prostranstv affinnoi svyaznosti”, Izv. fiz.-matem. o-va pri Kazansk. un-te. Ser. 3, 14 (1949), 53–72

[2] Sultanov A. Ya., “Differentsirovanie lineinykh algebr i lineinye svyaznosti”, Itogi nauki i tekhn. Sovremen. matem. i ee prilozh. Tematicheskie obzory, 123, VINITI, M., 2009, 142–210

[3] Yano K., Ishihara S., Tangent and cotangent bundles. Differential geometry, Marcel Dekker, New York, 1973 | Zbl

[4] Sultanov A. Ya., “Prodolzhenie rimanovykh metrik iz bazy v rassloenie strui vtorogo poryadka differentsiruemykh otobrazhenii”, Materialy Mezhdun. geometrich. shkoly-semin. pamyati N. V. Efimova (Abrau-Dyurso, 24 sentyabrya – 4 oktyabrya 1996), Izd-vo RGU, Rostov na-Donu, 1996, 26

[5] Osminina N. A., “O nekotorykh liftakh kasatelnogo rassloeniya vtorogo poryadka so svyaznostyu polnogo lifta”, Dvizheniya v obobschennykh prostranstvakh, Penza, 1999, 107–120

[6] Manina N. I., “Nekotorye svoistva gorizontalnogo lifta lineinoi svyaznosti v kasatelnoe rassloenie vtorogo poryadka”, Fundamentalnye nauki i obrazovanie, Biisk, 2006, 39–44

[7] Shurygin V. V., “Gladkie mnogoobraziya nad lokalnymi algebrami i rassloeniya Veilya”, Itogi nauki i tekhn. Sovremen. matem. i ee prilozh. Tematicheskie obzory, 73, VINITI, M., 2002, 162–236 | MR | Zbl