Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 62-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the canonical expansion of an infinitesimal affine transformation of the second order tangent bundle with horizontal lift connection. We establish necessary and sufficient conditions under which a vector field is an infinitesimal affine transformation. We also construct the horizontal lift of a linear connection to a second orderWeil bundle.
Keywords: second order tangent bundle, linear connection, horizontal lift of a linear connection, second order Weil bundle.
Mots-clés : infinitesimal affine transformation
@article{IVM_2011_9_a6,
     author = {N. I. Manina and A. Ya. Sultanov},
     title = {Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--69},
     publisher = {mathdoc},
     number = {9},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_9_a6/}
}
TY  - JOUR
AU  - N. I. Manina
AU  - A. Ya. Sultanov
TI  - Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 62
EP  - 69
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_9_a6/
LA  - ru
ID  - IVM_2011_9_a6
ER  - 
%0 Journal Article
%A N. I. Manina
%A A. Ya. Sultanov
%T Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 62-69
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_9_a6/
%G ru
%F IVM_2011_9_a6
N. I. Manina; A. Ya. Sultanov. Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 62-69. http://geodesic.mathdoc.fr/item/IVM_2011_9_a6/

[1] Egorov I. P., “Gruppy dvizhenii prostranstv affinnoi svyaznosti”, Izv. fiz.-matem. o-va pri Kazansk. un-te. Ser. 3, 14 (1949), 53–72

[2] Sultanov A. Ya., “Differentsirovanie lineinykh algebr i lineinye svyaznosti”, Itogi nauki i tekhn. Sovremen. matem. i ee prilozh. Tematicheskie obzory, 123, VINITI, M., 2009, 142–210

[3] Yano K., Ishihara S., Tangent and cotangent bundles. Differential geometry, Marcel Dekker, New York, 1973 | Zbl

[4] Sultanov A. Ya., “Prodolzhenie rimanovykh metrik iz bazy v rassloenie strui vtorogo poryadka differentsiruemykh otobrazhenii”, Materialy Mezhdun. geometrich. shkoly-semin. pamyati N. V. Efimova (Abrau-Dyurso, 24 sentyabrya – 4 oktyabrya 1996), Izd-vo RGU, Rostov na-Donu, 1996, 26

[5] Osminina N. A., “O nekotorykh liftakh kasatelnogo rassloeniya vtorogo poryadka so svyaznostyu polnogo lifta”, Dvizheniya v obobschennykh prostranstvakh, Penza, 1999, 107–120

[6] Manina N. I., “Nekotorye svoistva gorizontalnogo lifta lineinoi svyaznosti v kasatelnoe rassloenie vtorogo poryadka”, Fundamentalnye nauki i obrazovanie, Biisk, 2006, 39–44

[7] Shurygin V. V., “Gladkie mnogoobraziya nad lokalnymi algebrami i rassloeniya Veilya”, Itogi nauki i tekhn. Sovremen. matem. i ee prilozh. Tematicheskie obzory, 73, VINITI, M., 2002, 162–236 | MR | Zbl