The convergence rate of a~projection-difference method for an abstract coupled problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a system of abstract differential equations in Hilbert spaces that generalizes some coupled thermoelasticity problems. We obtain a priori energy estimate for the convergence rate of a projection-difference method as applied to the Cauchy problem with an arbitrary choice of projection subspaces.
Keywords: abstract differential equations, projection-difference method, coupled thermoelasticity problems.
Mots-clés : convergence rate
@article{IVM_2011_9_a5,
     author = {S. E. Zhelezovskii},
     title = {The convergence rate of a~projection-difference method for an abstract coupled problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--61},
     publisher = {mathdoc},
     number = {9},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_9_a5/}
}
TY  - JOUR
AU  - S. E. Zhelezovskii
TI  - The convergence rate of a~projection-difference method for an abstract coupled problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 52
EP  - 61
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_9_a5/
LA  - ru
ID  - IVM_2011_9_a5
ER  - 
%0 Journal Article
%A S. E. Zhelezovskii
%T The convergence rate of a~projection-difference method for an abstract coupled problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 52-61
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_9_a5/
%G ru
%F IVM_2011_9_a5
S. E. Zhelezovskii. The convergence rate of a~projection-difference method for an abstract coupled problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 52-61. http://geodesic.mathdoc.fr/item/IVM_2011_9_a5/

[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | Zbl

[2] Zhelezovskii S. E., “O skhodimosti metoda Galërkina dlya svyazannykh zadach termouprugosti”, Zhurn. vychisl. matem. i matem. fiz., 46:8 (2006), 1462–1474 | MR

[3] Zhelezovskii S. E., “O gladkosti resheniya abstraktnoi svyazannoi zadachi tipa zadach termouprugosti”, Zhurn. vychisl. matem. i matem. fiz., 50:7 (2010), 1240–1257 | MR | Zbl

[4] Zhelezovskii S. E., “Otsenki skorosti skhodimosti proektsionno-raznostnogo metoda dlya giperbolicheskikh uravnenii”, Izv. vuzov. Matem., 2002, no. 1, 21–30 | MR | Zbl

[5] Smagin V. V., “Proektsionno-raznostnye metody priblizhennogo resheniya parabolicheskikh uravnenii s nesimmetrichnymi operatorami”, Differents. uravneniya, 37:1 (2001), 115–123 | MR | Zbl

[6] Lyashko A. D., Fedotov E. M., “Otsenka pogreshnosti proektsionno-raznostnykh skhem dlya vyrozhdayuschikhsya nestatsionarnykh uravnenii”, Differents. uravneniya, 42:7 (2006), 951–955 | MR | Zbl

[7] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980

[8] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989

[9] Zhelezovskii S. E., “Otsenka pogreshnosti metoda Galërkina dlya abstraktnogo evolyutsionnogo uravneniya vtorogo poryadka s negladkim svobodnym chlenom”, Differents. uravneniya, 40:7 (2004), 944–952 | MR | Zbl