Mots-clés : convergence rate
@article{IVM_2011_9_a5,
author = {S. E. Zhelezovskii},
title = {The convergence rate of a~projection-difference method for an abstract coupled problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {52--61},
year = {2011},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_9_a5/}
}
S. E. Zhelezovskii. The convergence rate of a projection-difference method for an abstract coupled problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 52-61. http://geodesic.mathdoc.fr/item/IVM_2011_9_a5/
[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | Zbl
[2] Zhelezovskii S. E., “O skhodimosti metoda Galërkina dlya svyazannykh zadach termouprugosti”, Zhurn. vychisl. matem. i matem. fiz., 46:8 (2006), 1462–1474 | MR
[3] Zhelezovskii S. E., “O gladkosti resheniya abstraktnoi svyazannoi zadachi tipa zadach termouprugosti”, Zhurn. vychisl. matem. i matem. fiz., 50:7 (2010), 1240–1257 | MR | Zbl
[4] Zhelezovskii S. E., “Otsenki skorosti skhodimosti proektsionno-raznostnogo metoda dlya giperbolicheskikh uravnenii”, Izv. vuzov. Matem., 2002, no. 1, 21–30 | MR | Zbl
[5] Smagin V. V., “Proektsionno-raznostnye metody priblizhennogo resheniya parabolicheskikh uravnenii s nesimmetrichnymi operatorami”, Differents. uravneniya, 37:1 (2001), 115–123 | MR | Zbl
[6] Lyashko A. D., Fedotov E. M., “Otsenka pogreshnosti proektsionno-raznostnykh skhem dlya vyrozhdayuschikhsya nestatsionarnykh uravnenii”, Differents. uravneniya, 42:7 (2006), 951–955 | MR | Zbl
[7] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980
[8] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989
[9] Zhelezovskii S. E., “Otsenka pogreshnosti metoda Galërkina dlya abstraktnogo evolyutsionnogo uravneniya vtorogo poryadka s negladkim svobodnym chlenom”, Differents. uravneniya, 40:7 (2004), 944–952 | MR | Zbl