Finite groups, whose primary subgroups are either $F$-subnormal or $F$-abnormal
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 46-55
Voir la notice de l'article provenant de la source Math-Net.Ru
We study finite groups whose each primary subgroup is either subnormal or abnormal with respect to classes of all nilpotent, all $p$-closed, and all $p$-nilpotent groups. In particular, we completely describe these groups.
Keywords:
primary groups, subnormality, abnormality, $p$-nilpotent groups.
@article{IVM_2011_8_a6,
author = {V. N. Semenchuk and S. N. Shevchuk},
title = {Finite groups, whose primary subgroups are either $F$-subnormal or $F$-abnormal},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {46--55},
publisher = {mathdoc},
number = {8},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_8_a6/}
}
TY - JOUR AU - V. N. Semenchuk AU - S. N. Shevchuk TI - Finite groups, whose primary subgroups are either $F$-subnormal or $F$-abnormal JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 46 EP - 55 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_8_a6/ LA - ru ID - IVM_2011_8_a6 ER -
V. N. Semenchuk; S. N. Shevchuk. Finite groups, whose primary subgroups are either $F$-subnormal or $F$-abnormal. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 46-55. http://geodesic.mathdoc.fr/item/IVM_2011_8_a6/