Finite groups, whose primary subgroups are either $F$-subnormal or $F$-abnormal
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 46-55
Cet article a éte moissonné depuis la source Math-Net.Ru
We study finite groups whose each primary subgroup is either subnormal or abnormal with respect to classes of all nilpotent, all $p$-closed, and all $p$-nilpotent groups. In particular, we completely describe these groups.
Keywords:
primary groups, subnormality, abnormality, $p$-nilpotent groups.
@article{IVM_2011_8_a6,
author = {V. N. Semenchuk and S. N. Shevchuk},
title = {Finite groups, whose primary subgroups are either $F$-subnormal or $F$-abnormal},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {46--55},
year = {2011},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_8_a6/}
}
TY - JOUR AU - V. N. Semenchuk AU - S. N. Shevchuk TI - Finite groups, whose primary subgroups are either $F$-subnormal or $F$-abnormal JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 46 EP - 55 IS - 8 UR - http://geodesic.mathdoc.fr/item/IVM_2011_8_a6/ LA - ru ID - IVM_2011_8_a6 ER -
V. N. Semenchuk; S. N. Shevchuk. Finite groups, whose primary subgroups are either $F$-subnormal or $F$-abnormal. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 46-55. http://geodesic.mathdoc.fr/item/IVM_2011_8_a6/
[1] Ebert G., Bauman S., “A note on subnormal and abnormal chains”, J. Algebra, 36:2 (1975), 287–293 | DOI | MR | Zbl
[2] Semenchuk V. N., “Stroenie konechnykh grupp s $\mathfrak F$-abnormalnymi ili $\mathfrak F$-subnormalnymi podgruppami”, Vopr. algebry, 2, Izd-vo “Universitetskoe”, Minsk, 1985, 50–55
[3] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl
[4] Semenchuk V. N., “Ob odnoi probleme v teorii formatsii”, Vestsi AN Belarusi, 1996, no. 3, 25–29 | MR | Zbl
[5] Semenchuk V. N., Shevchuk S. N., “O proizvedenii klassov konechnykh grupp”, Izv. Gomelsk. gos. un-ta, 6:51 (2008), 162–163