On $\infty$-quasivarieties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 40-45
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce the notion of an $\infty$-quasivariety and characterize $\infty$-quasivarieties as classes closed with respect to certain operators.
Keywords:
universal algebras, quasiidentities, direct limits, direct products
Mots-clés : subalgebras.
Mots-clés : subalgebras.
@article{IVM_2011_8_a5,
author = {A. G. Pinus},
title = {On $\infty$-quasivarieties},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {40--45},
year = {2011},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_8_a5/}
}
A. G. Pinus. On $\infty$-quasivarieties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 40-45. http://geodesic.mathdoc.fr/item/IVM_2011_8_a5/
[1] Pinus A. G., “Geometricheskie shkaly mnogoobrazii algebr i kvazitozhdestva”, Matem. trudy, 12:2 (2009), 160–169 | MR
[2] Gorbunov V. A., Algebraicheskaya teoriya kvazimnogoobrazii, Izd-vo “Nauchnaya kniga”, Novosibirsk, 1999
[3] Pinus A. G., “O geometricheski polnykh mnogoobraziyakh”, Vestn. Novosibirsk. un-ta (to appear)