Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_8_a4, author = {I. N. Maliev and M. A. Pliev}, title = {Continuity of ring homomorphisms for local $C^\star$-algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {34--39}, publisher = {mathdoc}, number = {8}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_8_a4/} }
I. N. Maliev; M. A. Pliev. Continuity of ring homomorphisms for local $C^\star$-algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 34-39. http://geodesic.mathdoc.fr/item/IVM_2011_8_a4/
[1] Apostol C., “$b^\star$-algebras and their representation”, J. London Math. Soc. Ser. 2, 3 (1971), 30–38 | DOI | MR | Zbl
[2] Fragoulopoulou M., “An introduction to the representation theory of topological $\star$-algebras”, Schriftenr. Math. Inst. Univ. Münster Ser. 2, 48 (1988), 1–81 | MR
[3] Inoue A., “Locally $C^\star$-algebras”, Mem. Fac. Sci. Kyushu. Univ. Ser. A, 25 (1971), 197–235 | DOI | MR | Zbl
[4] Phillips C. N., “Inverse limits of $C^\star$-algebras”, J. Oper. Theory, 19:1 (1988), 159–195 | MR | Zbl
[5] Fragoulopoulou M., Topological algebras with involution, Elsevier, Amsterdam, 2005 | MR | Zbl
[6] Joita M., Hilbert modules over locally $C^\star$-algebras, Univ. Bucharest Press, 2006 | Zbl
[7] Mallios A., Topological algebras. Selected topics, North-Holland Math. Studies, 124{, Notas de Matemática,} 109, North-Holland Publishing Co., Amsterdam, 1986 | MR | Zbl
[8] Khosravi A., Asgari M. S., “Frames and basis in Hilbert modules over locally $C^\star$-algebras”, Int. J. Pure Appl. Math., 14:2 (2004), 171–190 | MR
[9] Joita M., “Strict completely positive maps between locally $C^\star$-algebras and representations of Hilbert modules”, J. London Math. Soc. Ser. 2, 66:2 (2002), 421–432 | DOI | MR | Zbl
[10] Joita M., “Crossed products of locally $C^\star$-algebras”, Rocky Mountain J. Math., 37:5 (2007), 1623–1644 | DOI | MR | Zbl
[11] Joita M., “Morita eqivalence for locally $C^\star$-algebras”, Bull. London Math. Soc., 36:6 (2004), 802–810 | DOI | MR | Zbl
[12] Joita M., “Tenzor products of Hilbert modules over locally $C^\star$-algebras”, Chechoslovak Math. J., 54:3 (2004), 727–737 | DOI | MR | Zbl
[13] Joita M., “On tensor products of completely positive linear maps between pro-$C^\star$-algebras”, Positivity, 13:2 (2009), 307–319 | DOI | MR | Zbl
[14] Joita M., “On frames in Hilbert modules over pro-$C^\star$-algebras”, Topology Appl., 156:1 (2008), 83–92 | DOI | MR | Zbl
[15] Joita M., “Frames of multipliers in tenzor product of Hilbert modules over pro-$C^\star$-algebras”, J. Math. Anal. Appl., 367:2 (2010), 522–534 | DOI | MR | Zbl
[16] Sharipov F., Zhuraev Yu .I., Hilbert modules over locally $C^\star$-algebras, Preprint, arXiv: math/0011053v3
[17] Merfi D., $C^\star$-algebry i teoriya operatorov, Faktorial, M., 1997
[18] Paulsen V., Completely bounded maps and operator algebras, Cambridge Univ. Press, 2002 | MR
[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[20] Tomforde M., Continuity of ring $\star$-homomorphisms between $C^\star$-algebras, Preprint, arXiv: 0810.0422v4 | MR