Localization of Cesaro means of Fourier series for functions of bounded $\Lambda$-variation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 9-13
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider classes of periodic functions of bounded $\Lambda$-variation of the power order of growth $\Lambda$. We show that this class contains a continuous function whose Cesaro means (of a power that depends on the order of growth $\Lambda$) of the Fourier series do not satisfy the localization property.
Keywords:
Cesaro means, generalized variation.
@article{IVM_2011_8_a1,
author = {A. N. Bakhvalov},
title = {Localization of {Cesaro} means of {Fourier} series for functions of bounded $\Lambda$-variation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {9--13},
publisher = {mathdoc},
number = {8},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_8_a1/}
}
TY - JOUR AU - A. N. Bakhvalov TI - Localization of Cesaro means of Fourier series for functions of bounded $\Lambda$-variation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 9 EP - 13 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_8_a1/ LA - ru ID - IVM_2011_8_a1 ER -
A. N. Bakhvalov. Localization of Cesaro means of Fourier series for functions of bounded $\Lambda$-variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 9-13. http://geodesic.mathdoc.fr/item/IVM_2011_8_a1/