Fully idempotent homomorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary modules $A$ and $B$ we introduce and study the notion of a fully idempotent $\operatorname{Hom}(A,B)$. As a corollary we obtain some well-known properties of fully idempotent rings and modules.
Keywords: fully idempotent ring, fully idempotent module
Mots-clés : quasi-projective module, quasi-injective module.
@article{IVM_2011_8_a0,
     author = {A. N. Abyzov},
     title = {Fully idempotent homomorphisms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_8_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - Fully idempotent homomorphisms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 8
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_8_a0/
LA  - ru
ID  - IVM_2011_8_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T Fully idempotent homomorphisms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-8
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_8_a0/
%G ru
%F IVM_2011_8_a0
A. N. Abyzov. Fully idempotent homomorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_2011_8_a0/