The continuous dependence of solutions to algebraic differential systems on the initial data
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 80-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear system of ordinary differential equations, which is unsolved with respect to the derivative of the desired vector function and identically degenerate in the definition domain. We study the consistency manifold under assumptions that guarantee the existence of a solution. We prove an analog of the theorem on the continuous dependence of solutions on the initial data, assuming that the latter belong to the consistency manifold.
Keywords: continuous dependence on initial data, consistent initial data, nonlinear differential algebraic equations
Mots-clés : existence of a solution.
@article{IVM_2011_7_a8,
     author = {A. A. Shcheglova},
     title = {The continuous dependence of solutions to algebraic differential systems on the initial data},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--93},
     publisher = {mathdoc},
     number = {7},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a8/}
}
TY  - JOUR
AU  - A. A. Shcheglova
TI  - The continuous dependence of solutions to algebraic differential systems on the initial data
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 80
EP  - 93
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_7_a8/
LA  - ru
ID  - IVM_2011_7_a8
ER  - 
%0 Journal Article
%A A. A. Shcheglova
%T The continuous dependence of solutions to algebraic differential systems on the initial data
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 80-93
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_7_a8/
%G ru
%F IVM_2011_7_a8
A. A. Shcheglova. The continuous dependence of solutions to algebraic differential systems on the initial data. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 80-93. http://geodesic.mathdoc.fr/item/IVM_2011_7_a8/

[1] Campbell S. L., “Non-BDF methods for the solution of linear time varying implicit differential equations”, Proc. Amer. Contr. Conf. (San Diego, California, June 5–6, 1984), v. 3, San Diego, 1984, 1315–1318

[2] Chistyakov V. F., Scheglova A. A., Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003 | MR | Zbl

[3] Scheglova A. A., “Nelineinye algebro-differentsialnye sistemy”, Sibirskii matem. zhurn., 48:4 (2007), 931–948 | MR | Zbl

[4] Hanke M., Macana E. I., März R., On asymptotics in case of index-2 differential-algebraic equations, Preprint 97-3, Institut für Mathematik der Humboldt-Universität zu Berlin, Berlin, 1997

[5] Lamour R., März R., Winkler R., How Floquet-theory applies to differential-algebraic equations, Preprint 96-15, Institut für Mathematik der Humboldt-Universität zu Berlin, Berlin, 1996

[6] Griepentrog E., Maerz R., Differential-algebraic equations and their numerical treatment, BSB B. G. Teubner Verlag gesellschaft, Leipzig, 1986 | MR | Zbl

[7] Kunkel P., Mehrmann V., “Regular solutions of nonlinear differential-algebraic equations and their numerical determination”, Numer. Math., 79:4 (1998), 581–600 | DOI | MR | Zbl

[8] Scheglova A. A., Chistyakov V. F., “Ustoichivost lineinykh algebro-differentsialnykh sistem”, Differents. uravneniya, 40:1 (2004), 47–57 | MR

[9] Muller P. C., “Stability and optimal control of nonlinear descriptor systems: a survey”, Appl. Math. Comp., 8:2 (1998), 269–286 | MR

[10] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996 | MR | Zbl

[11] Rozhdestvenskii B. P., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1976 | MR

[12] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[13] Brenan K. E., Campbell S. L., Petzold L. R., Numerical solution of initial-value problems in differential-algebraic equations, SIAM, Philadelphia, 1996 | MR | Zbl

[14] Chistyakov V. F., “O svyazi struktury puchka matrits s suschestvovaniem reshenii neyavnoi sistemy ODU”, Metody optimizatsii i issledovanie operatsii, Izd-vo SEI SO AN SSSR, Irkutsk, 1984, 194–202

[15] Shilov G. E., Matematicheskii analiz. Funktsii neskolkikh veschestvennykh peremennykh, Ch. 1–2, Nauka, M., 1972 | Zbl

[16] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, GITTL, M.–L., 1949