Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_7_a8, author = {A. A. Shcheglova}, title = {The continuous dependence of solutions to algebraic differential systems on the initial data}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {80--93}, publisher = {mathdoc}, number = {7}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a8/} }
TY - JOUR AU - A. A. Shcheglova TI - The continuous dependence of solutions to algebraic differential systems on the initial data JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 80 EP - 93 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_7_a8/ LA - ru ID - IVM_2011_7_a8 ER -
A. A. Shcheglova. The continuous dependence of solutions to algebraic differential systems on the initial data. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 80-93. http://geodesic.mathdoc.fr/item/IVM_2011_7_a8/
[1] Campbell S. L., “Non-BDF methods for the solution of linear time varying implicit differential equations”, Proc. Amer. Contr. Conf. (San Diego, California, June 5–6, 1984), v. 3, San Diego, 1984, 1315–1318
[2] Chistyakov V. F., Scheglova A. A., Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003 | MR | Zbl
[3] Scheglova A. A., “Nelineinye algebro-differentsialnye sistemy”, Sibirskii matem. zhurn., 48:4 (2007), 931–948 | MR | Zbl
[4] Hanke M., Macana E. I., März R., On asymptotics in case of index-2 differential-algebraic equations, Preprint 97-3, Institut für Mathematik der Humboldt-Universität zu Berlin, Berlin, 1997
[5] Lamour R., März R., Winkler R., How Floquet-theory applies to differential-algebraic equations, Preprint 96-15, Institut für Mathematik der Humboldt-Universität zu Berlin, Berlin, 1996
[6] Griepentrog E., Maerz R., Differential-algebraic equations and their numerical treatment, BSB B. G. Teubner Verlag gesellschaft, Leipzig, 1986 | MR | Zbl
[7] Kunkel P., Mehrmann V., “Regular solutions of nonlinear differential-algebraic equations and their numerical determination”, Numer. Math., 79:4 (1998), 581–600 | DOI | MR | Zbl
[8] Scheglova A. A., Chistyakov V. F., “Ustoichivost lineinykh algebro-differentsialnykh sistem”, Differents. uravneniya, 40:1 (2004), 47–57 | MR
[9] Muller P. C., “Stability and optimal control of nonlinear descriptor systems: a survey”, Appl. Math. Comp., 8:2 (1998), 269–286 | MR
[10] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996 | MR | Zbl
[11] Rozhdestvenskii B. P., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1976 | MR
[12] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR
[13] Brenan K. E., Campbell S. L., Petzold L. R., Numerical solution of initial-value problems in differential-algebraic equations, SIAM, Philadelphia, 1996 | MR | Zbl
[14] Chistyakov V. F., “O svyazi struktury puchka matrits s suschestvovaniem reshenii neyavnoi sistemy ODU”, Metody optimizatsii i issledovanie operatsii, Izd-vo SEI SO AN SSSR, Irkutsk, 1984, 194–202
[15] Shilov G. E., Matematicheskii analiz. Funktsii neskolkikh veschestvennykh peremennykh, Ch. 1–2, Nauka, M., 1972 | Zbl
[16] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, GITTL, M.–L., 1949