Distributive and neutral elements of the lattice of commutative semigroup varieties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 67-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We completely determine commutative semigroup varieties that are distributive, standard or neutral elements of the lattice of all commutative semigroup varieties. In particular, it turns out that the properties of being a distributive element and of being a standard element in this lattice are equivalent.
Keywords: semigroup, variety, lattice, distributive element, standard element.
Mots-clés : neutral element
@article{IVM_2011_7_a7,
     author = {V. Yu. Shaprynskii},
     title = {Distributive and neutral elements of the lattice of commutative semigroup varieties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--79},
     year = {2011},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a7/}
}
TY  - JOUR
AU  - V. Yu. Shaprynskii
TI  - Distributive and neutral elements of the lattice of commutative semigroup varieties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 67
EP  - 79
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_7_a7/
LA  - ru
ID  - IVM_2011_7_a7
ER  - 
%0 Journal Article
%A V. Yu. Shaprynskii
%T Distributive and neutral elements of the lattice of commutative semigroup varieties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 67-79
%N 7
%U http://geodesic.mathdoc.fr/item/IVM_2011_7_a7/
%G ru
%F IVM_2011_7_a7
V. Yu. Shaprynskii. Distributive and neutral elements of the lattice of commutative semigroup varieties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 67-79. http://geodesic.mathdoc.fr/item/IVM_2011_7_a7/

[1] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matem., 2009, no. 3, 3–36 | MR | Zbl

[2] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR

[3] Burris S., Nelson E., “Embedding the dual of $\Pi_m$ in the lattice of equational classes of commutative semigroups”, Proc. Amer. Math. Soc., 30:1 (1971), 37–39 | MR | Zbl

[4] Perkins P., “Bases for equational theories of semigroups”, J. Algebra, 11:2 (1969), 298–314 | DOI | MR | Zbl

[5] Kisielewicz A., “Varieties of commutative semigroups”, Trans. Amer. Math. Soc., 342:1 (1994), 275–306 | DOI | MR | Zbl

[6] Ježek J., “The lattice of equational theories. Part I: modular elements”, Czechosl. Math. J., 31:1 (1981), 127–152 | MR

[7] Vernikov B. M., Volkov M. V., “Reshetki nilpotentnykh mnogoobrazii polugrupp”, Algebraich. sistemy i ikh mnogoobraziya, Ural. gos. un-t, Sverdlovsk, 1988, 53–65 | MR

[8] Vernikov B. M., “Upper-modular elements of the lattice of semigroup varieties”, Algebra Universalis, 59:3–4 (2008), 405–428 | DOI | MR | Zbl

[9] Sapir M. V., Sukhanov E. V., “O mnogoobraziyakh periodicheskikh polugrupp”, Izv. vuzov. Matem., 1981, no. 4, 48–55 | MR | Zbl

[10] Vernikov B. M., Volkov M. V., “Commuting fully invariant congruences on free semigroups”, Contrib. General Algebra, 12 (2000), 391–417 | MR | Zbl

[11] Korjakov I. O., “A scetch of the lattice of commutative nilpotent semigroup varieties”, Semigroup Forum, 24:4 (1982), 285–317 | DOI | MR | Zbl

[12] Volkov M. V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Izv. vuzov. Matem., 1989, no. 6, 51–60 | MR

[13] Tischenko A. V., “Zamechanie o polugruppovykh mnogoobraziyakh konechnogo indeksa”, Izv. vuzov. Matem., 1990, no. 7, 79–83 | MR | Zbl