A theorem on properties of sample functions of a~random field and generalized random fields
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 48-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the equivalence of some properties of a random field defined in terms of sample functions. We apply this theorem for studying generalized random fields.
Keywords: random fields, sample functions, total transform of a measure, cylindric set algebras, generalized random field.
@article{IVM_2011_7_a5,
     author = {S. L. Starodubov},
     title = {A theorem on properties of sample functions of a~random field and generalized random fields},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--56},
     publisher = {mathdoc},
     number = {7},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a5/}
}
TY  - JOUR
AU  - S. L. Starodubov
TI  - A theorem on properties of sample functions of a~random field and generalized random fields
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 48
EP  - 56
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_7_a5/
LA  - ru
ID  - IVM_2011_7_a5
ER  - 
%0 Journal Article
%A S. L. Starodubov
%T A theorem on properties of sample functions of a~random field and generalized random fields
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 48-56
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_7_a5/
%G ru
%F IVM_2011_7_a5
S. L. Starodubov. A theorem on properties of sample functions of a~random field and generalized random fields. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 48-56. http://geodesic.mathdoc.fr/item/IVM_2011_7_a5/

[1] Smolyanov O. G., Shavgulidze E. T., “Formuly Feinmana dlya reshenii beskonechnomernykh uravnenii Shredingera s polinomialnym potentsialom”, Dokl. RAN, 390:3 (2003), 321–324 | MR | Zbl

[2] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975 | MR

[3] Khalmosh P., Teoriya mery, In. lit., M., 1953 | MR

[4] Smolyanov O. G., “Ob izmerimosti i neizmerimosti podmnozhestv nekotorykh funktsionalnykh prostranstv s meroi”, Vestn. Moskovsk. un-ta. Ser. 1 Matem., mekhan., 1966, no. 4, 72–84

[5] Smolyanov O. G., Shavgulidze E. T., Kontinualnye integraly, Izd-vo MGU, M., 1990 | MR

[6] Ito K., Veroyatnostnye protsessy, v. 1, In. lit., M., 1960 | MR | Zbl

[7] Minlos R. A., “Sluchainoe pole obobschennoe”, Matematicheskaya entsiklopediya, v. 5, Sovetskaya entsiklopediya, M., 1985, 18