One approach to the solution of Volterra integral equations with degenerate kernels
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 28-36
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose a technique that in certain cases allows one to solve the considered equations in an explicit form.
Mots-clés :
Volterra equation
Keywords: degenerate kernel, Cauchy problem.
Keywords: degenerate kernel, Cauchy problem.
@article{IVM_2011_7_a3,
author = {V. I. Zhegalov and I. M. Sarvarova},
title = {One approach to the solution of {Volterra} integral equations with degenerate kernels},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {28--36},
year = {2011},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/}
}
TY - JOUR AU - V. I. Zhegalov AU - I. M. Sarvarova TI - One approach to the solution of Volterra integral equations with degenerate kernels JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 28 EP - 36 IS - 7 UR - http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/ LA - ru ID - IVM_2011_7_a3 ER -
V. I. Zhegalov; I. M. Sarvarova. One approach to the solution of Volterra integral equations with degenerate kernels. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 28-36. http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/
[1] Sabitov K. B., Funktsionalnye, differentsialnye i integralnye uravneniya, Vyssh. shkola, M., 2005 | Zbl
[2] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR
[3] Zaitsev V. F., Polyanin A. D., Spravochnik po nelineinym differentsialnym uravneniyam, Nauka, M., 1993 | MR | Zbl
[4] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1986 | MR | Zbl
[5] Ibragimov N. Kh., Prakticheskii kurs differentsialnykh uravnenii i matematicheskogo modelirovaniya, Izd-vo gos. un-ta im. N. I. Lobachevskogo, Nizhnii Novgorod, 2007