Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_7_a3, author = {V. I. Zhegalov and I. M. Sarvarova}, title = {One approach to the solution of {Volterra} integral equations with degenerate kernels}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {28--36}, publisher = {mathdoc}, number = {7}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/} }
TY - JOUR AU - V. I. Zhegalov AU - I. M. Sarvarova TI - One approach to the solution of Volterra integral equations with degenerate kernels JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 28 EP - 36 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/ LA - ru ID - IVM_2011_7_a3 ER -
V. I. Zhegalov; I. M. Sarvarova. One approach to the solution of Volterra integral equations with degenerate kernels. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 28-36. http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/
[1] Sabitov K. B., Funktsionalnye, differentsialnye i integralnye uravneniya, Vyssh. shkola, M., 2005 | Zbl
[2] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR
[3] Zaitsev V. F., Polyanin A. D., Spravochnik po nelineinym differentsialnym uravneniyam, Nauka, M., 1993 | MR | Zbl
[4] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1986 | MR | Zbl
[5] Ibragimov N. Kh., Prakticheskii kurs differentsialnykh uravnenii i matematicheskogo modelirovaniya, Izd-vo gos. un-ta im. N. I. Lobachevskogo, Nizhnii Novgorod, 2007