One approach to the solution of Volterra integral equations with degenerate kernels
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 28-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a technique that in certain cases allows one to solve the considered equations in an explicit form.
Mots-clés : Volterra equation
Keywords: degenerate kernel, Cauchy problem.
@article{IVM_2011_7_a3,
     author = {V. I. Zhegalov and I. M. Sarvarova},
     title = {One approach to the solution of {Volterra} integral equations with degenerate kernels},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--36},
     publisher = {mathdoc},
     number = {7},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/}
}
TY  - JOUR
AU  - V. I. Zhegalov
AU  - I. M. Sarvarova
TI  - One approach to the solution of Volterra integral equations with degenerate kernels
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 28
EP  - 36
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/
LA  - ru
ID  - IVM_2011_7_a3
ER  - 
%0 Journal Article
%A V. I. Zhegalov
%A I. M. Sarvarova
%T One approach to the solution of Volterra integral equations with degenerate kernels
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 28-36
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/
%G ru
%F IVM_2011_7_a3
V. I. Zhegalov; I. M. Sarvarova. One approach to the solution of Volterra integral equations with degenerate kernels. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 28-36. http://geodesic.mathdoc.fr/item/IVM_2011_7_a3/

[1] Sabitov K. B., Funktsionalnye, differentsialnye i integralnye uravneniya, Vyssh. shkola, M., 2005 | Zbl

[2] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[3] Zaitsev V. F., Polyanin A. D., Spravochnik po nelineinym differentsialnym uravneniyam, Nauka, M., 1993 | MR | Zbl

[4] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1986 | MR | Zbl

[5] Ibragimov N. Kh., Prakticheskii kurs differentsialnykh uravnenii i matematicheskogo modelirovaniya, Izd-vo gos. un-ta im. N. I. Lobachevskogo, Nizhnii Novgorod, 2007