Codistributive elements of the lattice of semigroup varieties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 13-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a semigroup variety is a codistributive element of the lattice SEM of all semigroup varieties then it either coincides with the variety of all semigroups or is a variety of semigroups with completely regular square. We completely classify strongly permutative varieties that are codistributive elements of SEM. We prove that a semigroup variety is a costandard element of the lattice SEM if and only if it is a neutral element of this lattice. In view of results obtained earlier, this gives a complete description of costandard elements of the lattice SEM.
Keywords: semigroup, variety, lattice, codistributive element, costandard element
Mots-clés : neutral element.
@article{IVM_2011_7_a1,
     author = {B. M. Vernikov},
     title = {Codistributive elements of the lattice of semigroup varieties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--21},
     publisher = {mathdoc},
     number = {7},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a1/}
}
TY  - JOUR
AU  - B. M. Vernikov
TI  - Codistributive elements of the lattice of semigroup varieties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 13
EP  - 21
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_7_a1/
LA  - ru
ID  - IVM_2011_7_a1
ER  - 
%0 Journal Article
%A B. M. Vernikov
%T Codistributive elements of the lattice of semigroup varieties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 13-21
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_7_a1/
%G ru
%F IVM_2011_7_a1
B. M. Vernikov. Codistributive elements of the lattice of semigroup varieties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 13-21. http://geodesic.mathdoc.fr/item/IVM_2011_7_a1/

[1] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matem., 2009, no. 3, 3–36 | MR | Zbl

[2] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR

[3] Vernikov B. M., Volkov M. V., “Reshetki nilpotentnykh mnogoobrazii polugrupp”, Algebraich. sistemy i ikh mnogoobraziya, Ural. gos. un-t, Sverdlovsk, 1988, 53–65 | MR

[4] Ježek J., McKenzie R. N., “Definability in the lattice of equational theories of semigroups”, Semigroup Forum, 46:2 (1993), 199–245 | MR

[5] Volkov M. V., “Modular elements of the lattice of semigroup varieties”, Contrib. General Algebra, 16 (2005), 275–288 | MR | Zbl

[6] Vernikov B. M., Volkov M. V., “Modular elements of the lattice of semigroup varieties. II”, Contrib. General Algebra, 17 (2006), 173–190 | MR | Zbl

[7] Vernikov B. M., “On modular elements of the lattice of semigroup varieties”, Comment. Math. Univ. Carol., 48:4 (2007), 595–606 | MR | Zbl

[8] Vernikov B. M., “Upper-modular elements of the lattice of semigroup varieties”, Algebra Universalis, 59:3–4 (2008), 405–428 | DOI | MR | Zbl

[9] Vernikov B. M., “Verkhnemodulyarnye elementy reshetki mnogoobrazii polugrupp. II”, Fundam. prikl. matem., 14:7 (2008), 43–51 | MR

[10] Vernikov B. M., “Lower-modular elements of the lattice of semigroup varieties”, Semigroup Forum, 75:3 (2007), 554–566 | DOI | MR

[11] Vernikov B. M., “Lower-modular elements of the lattice of semigroup varieties. II”, Acta Sci. Math. (Szeged), 74:3–4 (2008), 539–556 | MR | Zbl

[12] Shaprynskiǐ V. Yu., Vernikov B. M., “Lower-modular elements of the lattice of semigroup varieties. III”, Acta Sci. Math. (Szeged), 76:3–4 (2010), 371–382

[13] Vernikov B. M., Shaprynskii V. Yu., “Distributivnye elementy reshetki mnogoobrazii polugrupp”, Algebra i logika, 49:3 (2010), 303–330 | MR | Zbl

[14] Sapir M. V., Sukhanov E. V., “O mnogoobraziyakh periodicheskikh polugrupp”, Izv. vuzov. Matem., 1981, no. 4, 48–55 | MR | Zbl

[15] Volkov M. V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Izv. vuzov. Matem., 1989, no. 6, 51–60 | MR

[16] Head T. J., “The lattice of varieties of commutative monoids”, Nieuw Arch. Wiskunde. III Ser., 16:3 (1968), 203–206 | MR | Zbl

[17] Golubov E. A., Sapir M. V., “Mnogoobraziya finitno approksimiruemykh polugrupp”, Izv. vuzov. Matem., 1982, no. 11, 21–29 | MR | Zbl

[18] Aizenshtat A. Ya., “O nekotorykh podreshetkakh reshetki mnogoobrazii polugrupp”, Sovrem. algebra, 1, Leningr. gos. pedagogich. in-t, L., 1974, 3–15 | MR

[19] Vernikov B. M., Volkov M. V., “Dopolneniya v reshetkakh mnogoobrazii i kvazimnogoobrazii”, Izv. vuzov. Matem., 1982, no. 11, 17–20 | MR | Zbl

[20] Gerhard J. A., “Semigroups with an idempotent power. II. The lattice of equational subclasses of $[(xy)^2=xy]$”, Semigroup Forum, 14:4 (1977), 375–388 | DOI | MR | Zbl

[21] Pastijn F. J., Trotter P. G., “Complete congruences on lattices of varieties and of pseudovarieties”, Int. J. Algebra Comput., 8:2 (1998), 171–201 | DOI | MR | Zbl