Codistributive elements of the lattice of semigroup varieties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 13-21
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if a semigroup variety is a codistributive element of the lattice SEM of all semigroup varieties then it either coincides with the variety of all semigroups or is a variety of semigroups with completely regular square. We completely classify strongly permutative varieties that are codistributive elements of SEM. We prove that a semigroup variety is a costandard element of the lattice SEM if and only if it is a neutral element of this lattice. In view of results obtained earlier, this gives a complete description of costandard elements of the lattice SEM.
Keywords:
semigroup, variety, lattice, codistributive element, costandard element
Mots-clés : neutral element.
Mots-clés : neutral element.
@article{IVM_2011_7_a1,
author = {B. M. Vernikov},
title = {Codistributive elements of the lattice of semigroup varieties},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {13--21},
publisher = {mathdoc},
number = {7},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a1/}
}
B. M. Vernikov. Codistributive elements of the lattice of semigroup varieties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 13-21. http://geodesic.mathdoc.fr/item/IVM_2011_7_a1/