A method for the localization of singularities of a~solution to a~convolution-type equation of the first kind with a~step kernel
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem on the localization of singularities (delta-functions) of a solution to a convolution-type equation of the first kind with a step kernel. We propose a new regularization method which allows to calculate the number of singularities and to approximate them. The accuracy of approximation is calculated. We obtain bounds for an important characteristic of the method, namely, the separability threshold. We prove the order-optimality of the proposed method on classes of functions with singularities both with respect to the accuracy and the separability.
Keywords: ill-posed problems, localization of singularities, regularization method, separability threshold.
@article{IVM_2011_7_a0,
     author = {A. L. Ageev and T. V. Antonova},
     title = {A method for the localization of singularities of a~solution to a~convolution-type equation of the first kind with a~step kernel},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {7},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a0/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - A method for the localization of singularities of a~solution to a~convolution-type equation of the first kind with a~step kernel
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_7_a0/
LA  - ru
ID  - IVM_2011_7_a0
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T A method for the localization of singularities of a~solution to a~convolution-type equation of the first kind with a~step kernel
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_7_a0/
%G ru
%F IVM_2011_7_a0
A. L. Ageev; T. V. Antonova. A method for the localization of singularities of a~solution to a~convolution-type equation of the first kind with a~step kernel. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2011_7_a0/

[1] Antonova T. V., “Vosstanovlenie funktsii s konechnym chislom razryvov 1 roda po zashumlennym dannym”, Izv. vuzov. Matem., 2001, no. 7, 65–68 | MR | Zbl

[2] Antonova T. V., “Appoximation of function with finite number of discontinuities by noised data”, J. Inverse and Ill-Posed Problems, 10:2 (2002), 113–123 | MR | Zbl

[3] Antonova T. V., “O reshenii nelineinykh po parametru uravnenii 1 roda na klassakh obobschennykh funktsii”, Zhurn. vychisl. matem. i matem. fiziki, 40:6 (2000), 819–831 | MR | Zbl

[4] Antonova T. V., “Reshenie uravnenii pervogo roda na klassakh funktsii s osobennostyami”, Tr. In-ta matem. i mekh. UrO RAN, 8, no. 1, Ekaterinburg, 2002, 147–188 | MR | Zbl

[5] Ageev A. L., Antonova T. V., “Localization algorithms for singularities of solution to convolution equation of the first kind”, J. Inverse and Ill-Posed Problems, 16:7 (2008), 639–650 | DOI | MR | Zbl

[6] Ageev A. L., Antonova T. V., “Regulyariziruyuschie algoritmy lokalizatsii izlomov zashumlennoi funktsii”, Tr. In-ta matem. i mekh. UrO RAN, 15, no. 1, Ekaterinburg, 2009, 44–58

[7] Ageev A. L., Antonova T. V., “Regulyariziruyuschie algoritmy vydeleniya razryvov v nekorrektnykh zadachakh”, Zhurn. vychisl. matem. i matem. fiziki, 48:8 (2008), 1362–1370 | MR | Zbl

[8] Sizikov V. S., Matematicheskie metody obrabotki rezultatov izmereni, Politekhnika, SPb., 2001 | MR

[9] Ageev A. L., Antonova T. V., “O zadache razdeleniya osobennostei”, Izv. vuzov. Matem., 2007, no. 11, 3–9 | MR

[10] Ageev A. L., Antonova T. V., “Otsenki snizu v zadachakh lokalizatsii osobennostei funktsii”, Probl. teoret. i prikl. matem., Tr. 39-i Vserossiisk. molodezh. konf., Ekaterinburg, 2008, 56–60

[11] Ivanov V. K., Vasin V. V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR