Convergence of skew-symmetric iterative methods
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 75-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new technique for investigating the convergence of triangular skew-symmetric and product triangular skew-symmetric iterative methods (introduced earlier by the first author) based on the notion of a field of values of a matrix. We obtain formulas connecting the field of values of the initial matrix, the matrix which determines the iterative method, and eigenvalues of the iterative matrix. We prove that the mentioned methods can converge even if the initial matrix is not dissipative.
Keywords: skew-symmetric iterative methods, field of values of a matrix, convergence of iterative methods.
@article{IVM_2011_6_a8,
     author = {L. A. Krukier and B. L. Krukier},
     title = {Convergence of skew-symmetric iterative methods},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--79},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_6_a8/}
}
TY  - JOUR
AU  - L. A. Krukier
AU  - B. L. Krukier
TI  - Convergence of skew-symmetric iterative methods
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 75
EP  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_6_a8/
LA  - ru
ID  - IVM_2011_6_a8
ER  - 
%0 Journal Article
%A L. A. Krukier
%A B. L. Krukier
%T Convergence of skew-symmetric iterative methods
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 75-79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_6_a8/
%G ru
%F IVM_2011_6_a8
L. A. Krukier; B. L. Krukier. Convergence of skew-symmetric iterative methods. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2011_6_a8/

[1] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa kvazilineinykh sistem uravnenii”, Izv. vuzov. Matematika, 1979, no. 7, 41–52 | MR | Zbl

[2] Taussky O., “Positive definite matrices and their role in the study of the characteristic roots of general matrices”, Adv. Math., 2 (1968), 175–186 | DOI | MR | Zbl

[3] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[4] Krukier L. A., “Convergence acceleration of triangular iterative methods based on the skew-symmetric part of the matrix”, Appl. Numer. Math., 30 (1999), 281–290 | DOI | MR | Zbl

[5] Bochev M. A., Krukier L. A., “Reshenie strogo nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii iteratsionnymi metodami”, Zhurn. vychisl. matem. i matem. fiziki, 37:11 (1997), 1283–1293 | MR | Zbl

[6] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[7] Young D. M., Iterative solutions of large linear systems, Academic Press, NY, 1971 | MR | Zbl

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[9] Meurant G., Computer solutions of large linear systems, Elsevier Science, Amsterdam, 1999 | MR | Zbl