Relative rotation and variational inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 44-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of relative rotation of a multivalued vector field generated by a monotone-type operator. We obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galerkin method and the penalty one.
Mots-clés : relative rotation
Keywords: variational inequality, multivalued mapping, vector field, strong convergence.
@article{IVM_2011_6_a5,
     author = {V. S. Klimov and N. A. Demyankov},
     title = {Relative rotation and variational inequalities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--54},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_6_a5/}
}
TY  - JOUR
AU  - V. S. Klimov
AU  - N. A. Demyankov
TI  - Relative rotation and variational inequalities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 44
EP  - 54
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_6_a5/
LA  - ru
ID  - IVM_2011_6_a5
ER  - 
%0 Journal Article
%A V. S. Klimov
%A N. A. Demyankov
%T Relative rotation and variational inequalities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 44-54
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_6_a5/
%G ru
%F IVM_2011_6_a5
V. S. Klimov; N. A. Demyankov. Relative rotation and variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 44-54. http://geodesic.mathdoc.fr/item/IVM_2011_6_a5/

[1] Ryazantseva I. P., Izbrannye glavy teorii operatorov monotonnogo tipa, Nizhnii Novgorod, 2008

[2] Panagiotopulos P., Neravenstva v mekhanike i ikh prilozheniya, Mir, M., 1989 | MR

[3] Pokhozhaev S. I., “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funkts. analiz i ego prilozh., 1:3 (1967), 66–73 | MR | Zbl

[4] Browder F. E., “Pseudo-monotone operators and the direct method of the calculus of variations”, Arch. Ration. Mech. Anal., 38:4 (1970), 268–277 | DOI | MR | Zbl

[5] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Nauk. dumka, Kiev, 1973 | MR

[6] Klimov V. S., Senchakova N. V., “Ob otnositelnom vraschenii mnogoznachnykh potentsialnykh vektornykh polei”, Matem. sb., 182:10 (1991), 1393–1407 | MR | Zbl

[7] Klimov V. S., “O topologicheskikh kharakteristikakh negladkikh funktsionalov”, Izv. RAN. Ser. matem., 62:5 (1998), 117–134 | MR | Zbl

[8] Klimov V. S., “Beskonechnomernyi variant teoremy Puankare–Khopfa i gomologicheskie kharakteristiki funktsionalov”, Matem. sb., 192:1 (2001), 51–66 | MR | Zbl

[9] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[10] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[11] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[12] Klimov V. S., “Ogranichennye resheniya differentsialnykh vklyuchenii s odnorodnoi glavnoi chastyu”, Izv. RAN. Ser. matem., 64:4 (2000), 109–130 | MR | Zbl

[13] Gossez J. P., “Surjectivity results for pseudo-monotone mappings in complementary systems”, J. Math. Anal. Appl., 53 (1976), 484–494 | DOI | MR | Zbl

[14] Oben Zh. P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[15] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[16] Harker P. T., Pang J. S., “Finite dimensional variational inequality and nonlinear complementary problems: a survey of theory, algorithms and applications”, Math. Program., 48 (1990), 161–220 | DOI | MR | Zbl

[17] Goeleven D., Motreanu D., Motreanu V. V., “On the study of a class of variational inequalities via Leray–Schauder degree”, Fixed Point Theory Appl., 4 (2004), 261–271 | DOI | MR | Zbl

[18] Huang J., “The nonzero solutions and multiple solutions for a class of bilinear variational inequalities”, J. Ineq. Appl., 2007 (2007), Article ID 94808, 9 pp. downloads.hindawi.com/journals/jia/2007/094808.pdf | MR

[19] Konnov I. V., “Metod spuska s netochnym lineinym poiskom dlya smeshannykh variatsionnykh neravenstv”, Izv. vuzov. Matematika, 2009, no. 8, 37–44 | MR | Zbl

[20] Klimov V. S., “Topologicheskie kharakteristiki mnogoznachnykh otobrazhenii i lipshitsevykh funktsionalov”, Izv. RAN. Ser. matem., 72:4 (2008), 97–120 | MR | Zbl