Relative rotation and variational inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 44-54
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the notion of relative rotation of a multivalued vector field generated by a monotone-type operator. We obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galerkin method and the penalty one.
Mots-clés :
relative rotation
Keywords: variational inequality, multivalued mapping, vector field, strong convergence.
Keywords: variational inequality, multivalued mapping, vector field, strong convergence.
@article{IVM_2011_6_a5,
author = {V. S. Klimov and N. A. Demyankov},
title = {Relative rotation and variational inequalities},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {44--54},
publisher = {mathdoc},
number = {6},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_6_a5/}
}
V. S. Klimov; N. A. Demyankov. Relative rotation and variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 44-54. http://geodesic.mathdoc.fr/item/IVM_2011_6_a5/