Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_6_a4, author = {E. G. Ganenkova}, title = {The {Bagemihl} theorem for the skeleton of a~polydisk and its applications}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {35--43}, publisher = {mathdoc}, number = {6}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_6_a4/} }
E. G. Ganenkova. The Bagemihl theorem for the skeleton of a~polydisk and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 35-43. http://geodesic.mathdoc.fr/item/IVM_2011_6_a4/
[1] Bagemihl F., “Curvilinear cluster sets of arbitrary function”, Proc. Nat. Acad. Sci. USA, 41 (1955), 379–382 | DOI | MR | Zbl
[2] Young G. S., “A generalization of Bagemihl's theorem on ambiguous point”, Mich. Math. J., 5 (1958), 223–227 | DOI | MR | Zbl
[3] Bagemihl F., “Rectilinear limits of a function defined inside of sphere”, Mich. Math. J., 4 (1957), 147–150 | DOI | MR | Zbl
[4] Piranian G., “Ambiguous points of a functions continuous inside a sphere”, Mich. Math. J., 4 (1957), 151–152 | DOI | MR | Zbl
[5] Bagemihl F., “Ambiguous points of a functions harmonic inside a sphere”, Mich. Math. J., 4 (1957), 153–154 | DOI | MR | Zbl
[6] Church P. T., “Ambiguous points of a functions homeomorphic inside a sphere”, Mich. Math. J., 4 (1957), 155–156 | DOI | MR | Zbl
[7] Rippon P. J., “Ambiguous points of a functions in the unit ball of euclidean space”, Bull. Lond. Math. Soc., 15 (1983), 336–338 | DOI | MR | Zbl
[8] Pommerenke Ch., “Linear-invariante Familien analytischer Funktionen, I”, Math. Ann., 155 (1964), 108–154 | DOI | MR | Zbl
[9] Godula J., Starkov V. V., “Linearly invariant families of holomorphic functions in the unit polydisk”, Generalizations of complex analysis and their applications in physics, Banach Center Publ., 37, 1996, 115–127 | MR | Zbl
[10] Krzy.{z} J., “On the maximum modulus of univalent functions”, Bull. Pol. Acad. Sci. Math. Cl. III, 3 (1955), 203–206 | MR | Zbl
[11] Kheiman V. K., Mnogolistnye funktsii, In. lit., M., 1960, 180 pp. | MR
[12] Bieberbach L., Einführung in die konforme Abbildung, Sammlung Göschen, Berlin, 1967 | MR
[13] Campbell D. M., “Locally univalent functions with locally univalent derivatives”, Trans. Amer. Math. Soc., 162 (1971), 395–409 | DOI | MR
[14] Starkov V. V., “Teorema regulyarnosti dlya universalnykh lineino-invariantnykh semeistv funktsii”, Serdika, 11 (1985), 299–318 | MR | Zbl
[15] Godulya Ya., Starkov V. V., “Teorema regulyarnosti dlya lineino-invariantnykh semeistv funktsii v polikruge”, Izv. vuzov. Matematika, 1995, no. 8, 21–33 | MR | Zbl
[16] Godula J., Starkov V. V., “On regularity theorems for linearly invariant families of analytic functions in the unit polydisk”, Comput. Methods and Function Theory, 1997, 241–257 | MR | Zbl
[17] Godula J., Starkov V. V., “On regularity theorems for linearly invariant families of analytic functions in the unit polydisk, II”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 52:2 (1998), 15–24 | MR | Zbl
[18] Ganenkova E. G., “Teorema regulyarnosti ubyvaniya dlya analiticheskikh v polikruge funktsii”, Tr. Petrozavodsk. gos. un-ta. Ser. matem., 14, 2007, 14–30 | MR | Zbl
[19] Ganenkova E.G., “Teorema regulyarnosti ubyvaniya v lineino-invariantnykh semeistvakh funktsii”, Izv. vuzov. Matematika, 2007, no. 2, 75–78 | MR | Zbl
[20] Ganenkova E. G., “Nekotorye granichnye svoistva analiticheskikh v polikruge funktsii, obrazuyuschikh lineino-invariantnye semeistva”, Tr. Petrozavodsk. gos. un-ta. Ser. matem., 16, 2009, 12–32 | MR