Solution of boundary-value problems with generalized transmission conditions of the type of a~crack or a~screen
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 100-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain formulas for solutions of boundary-value problems similar to classical ones in cylindrical domains under additional generalized transmission conditions of the type of a strongly permeable crack or a weakly permeable screen. The obtained solutions are operations that affect the known function only in one variable. By a composition of the mentioned operators we solve boundary-value problems with generalized transmission conditions on intersecting surfaces.
Keywords: boundary-value problems, cracks, screens, method of convolution of Fourier expansions.
@article{IVM_2011_6_a11,
     author = {S. E. Kholodovskii and N. N. Shadrina},
     title = {Solution of boundary-value problems with generalized transmission conditions of the type of a~crack or a~screen},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {100--106},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_6_a11/}
}
TY  - JOUR
AU  - S. E. Kholodovskii
AU  - N. N. Shadrina
TI  - Solution of boundary-value problems with generalized transmission conditions of the type of a~crack or a~screen
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 100
EP  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_6_a11/
LA  - ru
ID  - IVM_2011_6_a11
ER  - 
%0 Journal Article
%A S. E. Kholodovskii
%A N. N. Shadrina
%T Solution of boundary-value problems with generalized transmission conditions of the type of a~crack or a~screen
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 100-106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_6_a11/
%G ru
%F IVM_2011_6_a11
S. E. Kholodovskii; N. N. Shadrina. Solution of boundary-value problems with generalized transmission conditions of the type of a~crack or a~screen. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 100-106. http://geodesic.mathdoc.fr/item/IVM_2011_6_a11/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[2] Vasilev B. A., “Ploskaya statsionarnaya zadacha teorii teploprovodnosti dlya sostavnoi klinovidnoi oblasti”, Differents. uravneniya, 20:3 (1984), 530–533 | MR

[3] Gurevich A. V., Krylov A. L., Topor D. N., “Reshenie ploskikh zadach gidrodinamiki poristykh sred vblizi razryvnykh narushenii metodom kompleksnogo potentsiala”, DAN SSSR, 298:4 (1988), 846–850 | MR | Zbl

[4] Krutitskii P. A., Sgibnev A. I., “Metod integralnykh uravnenii v obobschennoi zadache o skachke dlya uravneniya Laplasa vne razrezov na ploskosti”, Differents. uravneniya, 38:9 (2002), 1199–1213 | MR | Zbl

[5] Kholodovskii S. E., “Metod svertyvaniya razlozhenii Fure. Sluchai obobschennykh uslovii sopryazheniya tipa treschiny (zavesy) v kusochno-neodnorodnykh sredakh”, Differents. uravneniya, 45:6 (2009), 855–859 | MR

[6] Kholodovskii S. E., “Metod svertyvaniya razlozhenii Fure. Sluchai treschiny (zavesy) v neodnorodnom prostranstve”, Differents. uravneniya, 45:8 (2009), 1204–1208 | MR | Zbl

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl