Representation of solutions of convolution equations in nonquasianalytic Beurling classes of ultradifferentiable functions of mean type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider convolution equations in nonquasianalytic Beurling spaces of ultradifferentiable functions of mean type. We obtain a representation for a particular solution to such an equation as an exponential series whose coefficients are determined by the right-hand side of the equation.
Mots-clés : convolution equation
Keywords: ultradifferentiable functions, exponential series.
@article{IVM_2011_6_a0,
     author = {D. A. Abanina},
     title = {Representation of solutions of convolution equations in nonquasianalytic {Beurling} classes of ultradifferentiable functions of mean type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_6_a0/}
}
TY  - JOUR
AU  - D. A. Abanina
TI  - Representation of solutions of convolution equations in nonquasianalytic Beurling classes of ultradifferentiable functions of mean type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_6_a0/
LA  - ru
ID  - IVM_2011_6_a0
ER  - 
%0 Journal Article
%A D. A. Abanina
%T Representation of solutions of convolution equations in nonquasianalytic Beurling classes of ultradifferentiable functions of mean type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_6_a0/
%G ru
%F IVM_2011_6_a0
D. A. Abanina. Representation of solutions of convolution equations in nonquasianalytic Beurling classes of ultradifferentiable functions of mean type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2011_6_a0/

[1] Abanin A. V., Abanina D. A., “Teorema deleniya v nekotorykh vesovykh prostranstvakh tselykh funktsii”, Vladikavkazsk. matem. zhurn., 12:3 (2010), 3–20

[2] Abanina D. A., “Razreshimost uravnenii svertki v klassakh ultradifferentsiruemykh funktsii Berlinga normalnogo tipa”, Matematicheskii forum. Issledovaniya po matematicheskomu analizu (VNTs RAN i RSO-A, Vladikavkaz, 2009), v. 3, 2009, 34–47

[3] Leontev A. F., “Ob odnom sposobe resheniya uravneniya beskonechnogo poryadka”, Izv. AN SSSR. Ser. matem., 32:3 (1968), 687–708 | MR | Zbl

[4] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 325–355 | MR | Zbl

[5] Abanina D. A., “On Borel's theorem for spaces of ultradifferentiable functions of mean type”, Results Math., 44 (2003), 195–213 | MR | Zbl

[6] Abanin A. V., Tien Pham Trong, “Almost subadditive weight functions form Braun–Meise–Taylor theory of ultradistributions”, J. Math. Anal. Appl., 363 (2010), 296–301 | DOI | MR | Zbl

[7] Zharinov V. V., “Kompaktnye semeistva LVP i prostranstva $FS$ i $DFS$”, UMN, 34:4 (1979), 97–131 | MR | Zbl

[8] Abanin A. V., Filipev I. A., “Analiticheskaya realizatsiya prostranstv, sopryazhennykh k prostranstvam beskonechno differentsiruemykh funktsii”, Sib. matem. zhurn., 47:3 (2006), 485–500 | MR | Zbl

[9] Shneider D. M., “Sufficient sets for some spaces of entire functions”, Trans. Amer. Math., 197 (1974), 161–180 | DOI | MR

[10] Abanin A. V., “O nekotorykh priznakakh slaboi dostatochnosti”, Matem. zametki, 40:4 (1986), 442–454 | MR | Zbl

[11] Boas R. P., Entire functions, Academic Press, NY, 1954 | MR | Zbl

[12] Epifanov O. V., “Variatsii slabo dostatochnykh mnozhestv v prostranstvakh analiticheskikh funktsii”, Izv. vuzov. Matematika, 1986, no. 7, 50–56 | MR | Zbl

[13] Korobeinik Yu. F., “Ob odnoi dvoistvennoi zadache. 1. Obschie rezultaty. Prilozheniya k prostranstvam Freshe”, Matem. sb., 97(139):2 (1975), 193–229 | MR | Zbl

[14] Korobeinik Yu. F., “Induktivnye i proektivnye topologii. Dostatochnye mnozhestva i predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 539–565 | MR | Zbl