A uniqueness theorem for solution of one Dirichlet problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 62-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem in a four-dimensional domain formed by characteristic surfaces of an equation of the 8th order with the double major partial derivative. We state sufficient conditions for the unique solvability of this problem in terms of control coefficients, basing on the method of a priori estimates.
Keywords: Dirichlet problem, method of a priori estimates.
@article{IVM_2011_5_a7,
     author = {E. A. Utkina},
     title = {A uniqueness theorem for solution of one {Dirichlet} problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--67},
     publisher = {mathdoc},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_5_a7/}
}
TY  - JOUR
AU  - E. A. Utkina
TI  - A uniqueness theorem for solution of one Dirichlet problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 62
EP  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_5_a7/
LA  - ru
ID  - IVM_2011_5_a7
ER  - 
%0 Journal Article
%A E. A. Utkina
%T A uniqueness theorem for solution of one Dirichlet problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 62-67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_5_a7/
%G ru
%F IVM_2011_5_a7
E. A. Utkina. A uniqueness theorem for solution of one Dirichlet problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 62-67. http://geodesic.mathdoc.fr/item/IVM_2011_5_a7/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976

[2] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[3] Berezanskii Yu. M., “O zadache tipa Dirikhle dlya uravneniya kolebaniya struny”, UMZh, 12:4 (1960), 363–372 | MR

[4] Vakhaniya N. N., “Ob odnoi kraevoi zadache s zadaniem na vsei granitse dlya giperbolicheskoi sistemy, ekvivalentnoi uravneniyu kolebanii struny”, DAN SSSR, 116:6 (1957), 906–909 | Zbl

[5] Vakhaniya N. N., “O zadache Dirikhle dlya uravneniya kolebanii struny”, Soobsch. AN GruzSSR, 21:2 (1958), 131–138 | Zbl

[6] Fokin M. V., Nekorrektnye kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1981, 178–182

[7] Abdul-Latif A. I., “Dirichlet, Neumann and mixed Dirichlet–Neumann value problems for $u_{xy}=0$ in rectangles”, Proc. Roy. Soc. Edinburgh Ser. A, 82:1–2 (1978), 107–110 | MR | Zbl

[8] Kiguradze T., “On the correctness of Dirichlet problem in a characteristic rectangle for fourth order linear hyperbolic equations”, Georgian Math. J., 6:5 (1999), 447–470 | DOI | MR | Zbl

[9] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem A. A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, DAN SSSR, 297:3 (1987), 547–552 | MR

[10] Colton D., “Pseudoparabolic equations in one space variable”, J. Diff. Equ., 12:3 (1972), 559–565 | DOI | MR | Zbl

[11] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazansk. matem. o-vo, Kazan, 2001