Approximate solution of one singular integro-differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 35-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct and theoretically justify a computational scheme for solving the Cauchy problem for a singular integro-differential equation of the first-order, where the integral over a segment of the real axis is understood in the sense of the Cauchy principal value. In addition, we study and solve approximately the integral equation with a special logarithmic kernel. We obtain uniform estimates for errors of approximate formulas. Orders of errors of approximate solutions are proved to be proportional to the order of the approximation error for the derivative of the density of the singular integral in the integro-differential equation.
Keywords: integro-differential equation, approximate solution, logarithmic kernel, Prandtl equation.
Mots-clés : quadrature formula
@article{IVM_2011_5_a4,
     author = {I. N. Meleshko and P. G. Lasy},
     title = {Approximate solution of one singular integro-differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--43},
     publisher = {mathdoc},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_5_a4/}
}
TY  - JOUR
AU  - I. N. Meleshko
AU  - P. G. Lasy
TI  - Approximate solution of one singular integro-differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 35
EP  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_5_a4/
LA  - ru
ID  - IVM_2011_5_a4
ER  - 
%0 Journal Article
%A I. N. Meleshko
%A P. G. Lasy
%T Approximate solution of one singular integro-differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 35-43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_5_a4/
%G ru
%F IVM_2011_5_a4
I. N. Meleshko; P. G. Lasy. Approximate solution of one singular integro-differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 35-43. http://geodesic.mathdoc.fr/item/IVM_2011_5_a4/

[1] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii pervogo roda. Chislennyi analiz, Izd-vo Kazansk. un-ta, Kazan, 1994 | MR

[2] Gabdulkhaev B. G., Chislennyi analiz singulyarnykh integralnykh uravnenii, Izd-vo Kazansk. un-ta, Kazan, 1995 | MR

[3] Meleshko I. N., Spetsialnye formuly dlya integralov tipa Koshi i ikh prilozheniya, VUZ-YuNITI, Minsk, 1999

[4] Pykhteev G. N., “Obschaya i osnovnaya kraevye zadachi ploskikh struinykh ustanovivshikhsya techenii i sootvetstvuyuschie im nelineinye uravneniya”, PMTF, 1966, no. 1, 32–44

[5] Pykhteev G. N., “Nekotorye metody resheniya odnogo nelineinogo integro-differentsialnogo uravneniya teorii strui idealnoi zhidkosti”, PMTF, 1966, no. 2, 72–86 | Zbl

[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[7] Pykhteev G. N., “Tochnye metody vychisleniya integralov tipa Koshi po razomknutomu konturu”, Aplikace mat., 10:4 (1965), 351–373

[8] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1977 | MR

[9] Kalandiya A. I., Matematicheskie metody dvumernoi teorii uprugosti, Nauka, M., 1973 | MR

[10] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR | Zbl