Stability of semi-autonomous difference equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 25-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear difference equation with constant coefficients and several bounded variable delays we obtain criteria for the uniform and uniformly exponential stability expressed in terms of parameters of the initial problem. We adduce examples that prove the exactness of the boundaries of the obtained stability domain.
Keywords: difference equations, stability, efficient criteria.
@article{IVM_2011_5_a3,
     author = {A. Yu. Kulikov and V. V. Malygina},
     title = {Stability of semi-autonomous difference equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--34},
     publisher = {mathdoc},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_5_a3/}
}
TY  - JOUR
AU  - A. Yu. Kulikov
AU  - V. V. Malygina
TI  - Stability of semi-autonomous difference equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 25
EP  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_5_a3/
LA  - ru
ID  - IVM_2011_5_a3
ER  - 
%0 Journal Article
%A A. Yu. Kulikov
%A V. V. Malygina
%T Stability of semi-autonomous difference equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 25-34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_5_a3/
%G ru
%F IVM_2011_5_a3
A. Yu. Kulikov; V. V. Malygina. Stability of semi-autonomous difference equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 25-34. http://geodesic.mathdoc.fr/item/IVM_2011_5_a3/

[1] Kulikov A. Yu., Malygina V. V., “Ob ustoichivosti neavtonomnykh raznostnykh uravnenii s neskolkimi zapazdyvaniyami”, Izv. vuzov. Matematika, 2008, no. 3, 18–26 | MR | Zbl

[2] Malygina V. V., Kulikov A. Y., “On precision of constants in some theorems on stability of difference equations”, Funct. Differ. Equ., 15:3–4 (2008), 239–248 | MR | Zbl

[3] Berezansky L., Braverman E., “On existence of positive solutions for linear difference equations with several delays”, Adv. Dyn. Syst. Appl., 1:1 (2006), 29–47 | MR | Zbl

[4] Kulikov A. Yu., “Ustoichivost lineinogo raznostnogo uravneniya i otsenki ego fundamentalnogo resheniya”, Vychislitelnaya mekhanika, 8, Perm, 2009, 97–108

[5] Yu J. S., “Asymptotic stability for a linear difference equation with variable delay”, Comput. Math. Appl., 36:10–12 (1998), 203–210 | MR | Zbl

[6] Erbe L. H., Xia H., Yu J. S., “Global stability of a linear nonautonomous delay difference equation”, J. Difference Equ. Appl., 1:2 (1995), 151–161 | DOI | MR | Zbl

[7] Zhang B. G., Tian C. J., Wong P. J. Y., “Global attractivity of difference equation with variable delay”, Dyn. Contin. Discrete Impulsive Syst., 6:3 (1999), 307–313 | MR

[8] Berezansky L., Braverman E., “On Bohl–Perron type theorems for difference equations”, Funct. Differ. Equ., 11:1–2 (2004), 19–28 | MR | Zbl

[9] Kovácsvölgy I., “The asymptotic stability of difference equations”, Appl. Math. Lett., 13:1 (2000), 1–6 | DOI | MR

[10] Yu J. S., Cheng S. S., “A stability criterion for a neutral difference equation with delay”, Appl. Math. Lett., 7:6 (1994), 75–80 | DOI | MR | Zbl