Homogeneously simple associative algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 19-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every finite-dimensional homogeneously simple associative algebra over an algebraically closed field is representable as the product of a full matrix algebra and a graded field.
Keywords: homogeneously simple associative algebra, graded field.
@article{IVM_2011_5_a2,
     author = {N. A. Koreshkov},
     title = {Homogeneously simple associative algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--24},
     publisher = {mathdoc},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_5_a2/}
}
TY  - JOUR
AU  - N. A. Koreshkov
TI  - Homogeneously simple associative algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 19
EP  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_5_a2/
LA  - ru
ID  - IVM_2011_5_a2
ER  - 
%0 Journal Article
%A N. A. Koreshkov
%T Homogeneously simple associative algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 19-24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_5_a2/
%G ru
%F IVM_2011_5_a2
N. A. Koreshkov. Homogeneously simple associative algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 19-24. http://geodesic.mathdoc.fr/item/IVM_2011_5_a2/