An example of a~Carnot manifold with $C^1$-smooth basis vector fields
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 84-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct an example of a Carnot manifold whose basis vector fields are of class $C^1$ but not of class $C^2$.
Keywords: Carnot manifold, commutator of vector fields.
@article{IVM_2011_5_a11,
     author = {M. B. Karmanova},
     title = {An example of {a~Carnot} manifold with $C^1$-smooth basis vector fields},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--87},
     publisher = {mathdoc},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_5_a11/}
}
TY  - JOUR
AU  - M. B. Karmanova
TI  - An example of a~Carnot manifold with $C^1$-smooth basis vector fields
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 84
EP  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_5_a11/
LA  - ru
ID  - IVM_2011_5_a11
ER  - 
%0 Journal Article
%A M. B. Karmanova
%T An example of a~Carnot manifold with $C^1$-smooth basis vector fields
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 84-87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_5_a11/
%G ru
%F IVM_2011_5_a11
M. B. Karmanova. An example of a~Carnot manifold with $C^1$-smooth basis vector fields. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 84-87. http://geodesic.mathdoc.fr/item/IVM_2011_5_a11/

[1] Karmanova M., Vodopyanov S., “Geometry of Carnot–Caratheodory spaces, differentiability, area and coarea formulas”, Analysis and Mathematical Physics. Trends in Mathematics, Birkhäuser, Basel, 2009, 233–335 | MR

[2] Citti G., Sarti A., “A cortical based model of perceptual completion in the rototranslation space”, Lecture Notes of Seminario Interdisciplinare di Matematica, 3, 2004, 145–161 | Zbl

[3] Hladky R. K., Pauls S. D., “Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model”, J. Math. Imaging and Vision, 36:1 (2010), 1–27 | DOI

[4] Petitot J., Neurogéométrie de la vision. Modèles mathématiques et physiques des architectures fonctionelles, Les Éditions de l'École Polytechnique, Paris, 2008

[5] Vodopyanov S. K., Karmanova M. B., “Lokalnaya geometriya mnogoobrazii Karno v usloviyakh minimalnoi gladkosti”, Dokl. RAN, 413:3 (2007), 305–311 | MR

[6] Vodopyanov S. K., Karmanova M. B., “Lokalnaya approksimatsionnaya teorema na mnogoobraziyakh Karno v usloviyakh minimalnoi gladkosti”, Dokl. RAN, 427:3 (2009), 731–736 | MR

[7] Karmanova M. B., “Novyi podkhod k issledovaniyu geometrii prostranstv Karno–Karateodori”, Dokl. RAN, 434:3 (2010), 309–314

[8] Greshnov A. V., “O prilozhenii metodov gruppovogo analiza differentsialnykh uravnenii k nekotorym sistemam $C^1$-gladkikh vektornykh polei”, Sib. matem. zhurn., 50:1 (2009), 47–62 | MR | Zbl

[9] Selivanova S. V., “Kasatelnyi konus k regulyarnomu kvazimetricheskomu prostranstvu Karno–Karateodori”, Dokl. RAN, 425:5 (2009), 595–599 | MR | Zbl

[10] Selivanova S. V., “Kasatelnyi konus k kvazimetricheskomu prostranstvu s rastyazheniyami”, Sib. matem. zhurn., 51:2 (2010), 388–403 | MR | Zbl

[11] Vodopyanov S. K., Karmanova M. B., “Formula ploschadi dlya $C^1$-gladkikh kontaktnykh otobrazhenii mnogoobrazii Karno”, Dokl. RAN, 422:1 (2008), 15–20 | MR

[12] Karmanova M., Vodopyanov S., “An area formula for contact $C^1$-mappings of Carnot manifolds”, Complex Variables and Elliptic Equations, 55:1–3 (2010), 317–329 | DOI | MR | Zbl

[13] Vodopyanov S. K., Karmanova M. B., “Formula koploschadi dlya gladkikh kontaktnykh otobrazhenii mnogoobrazii Karno”, Dokl. RAN, 417:5 (2007), 583–588 | MR

[14] Karmanova M. B., “Formula ploschadi dlya lipshitsevykh otobrazhenii prostranstv Karno–Karateodori”, Dokl. RAN, 423:5 (2008), 603–608 | MR

[15] Karmanova M. B., “Kharakteristicheskoe mnozhestvo gladkikh kontaktnykh otobrazhenii prostranstv Karno–Karateodori”, Dokl. RAN, 425:3 (2009), 314–319 | MR | Zbl

[16] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. gos. ped. in-ta im. K. Libknekhta. Ser. fiz.-mat., 3:2 (1938), 83–94

[17] Chow W. L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1940/1941), 98–105 | DOI | MR

[18] Mitchell J., “On Carnot–Carathéodory metrics”, J. Differential Geometry, 21:1 (1985), 35–45 | MR | Zbl

[19] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[20] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields I: Basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR | Zbl