Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_5_a11, author = {M. B. Karmanova}, title = {An example of {a~Carnot} manifold with $C^1$-smooth basis vector fields}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {84--87}, publisher = {mathdoc}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_5_a11/} }
M. B. Karmanova. An example of a~Carnot manifold with $C^1$-smooth basis vector fields. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 84-87. http://geodesic.mathdoc.fr/item/IVM_2011_5_a11/
[1] Karmanova M., Vodopyanov S., “Geometry of Carnot–Caratheodory spaces, differentiability, area and coarea formulas”, Analysis and Mathematical Physics. Trends in Mathematics, Birkhäuser, Basel, 2009, 233–335 | MR
[2] Citti G., Sarti A., “A cortical based model of perceptual completion in the rototranslation space”, Lecture Notes of Seminario Interdisciplinare di Matematica, 3, 2004, 145–161 | Zbl
[3] Hladky R. K., Pauls S. D., “Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model”, J. Math. Imaging and Vision, 36:1 (2010), 1–27 | DOI
[4] Petitot J., Neurogéométrie de la vision. Modèles mathématiques et physiques des architectures fonctionelles, Les Éditions de l'École Polytechnique, Paris, 2008
[5] Vodopyanov S. K., Karmanova M. B., “Lokalnaya geometriya mnogoobrazii Karno v usloviyakh minimalnoi gladkosti”, Dokl. RAN, 413:3 (2007), 305–311 | MR
[6] Vodopyanov S. K., Karmanova M. B., “Lokalnaya approksimatsionnaya teorema na mnogoobraziyakh Karno v usloviyakh minimalnoi gladkosti”, Dokl. RAN, 427:3 (2009), 731–736 | MR
[7] Karmanova M. B., “Novyi podkhod k issledovaniyu geometrii prostranstv Karno–Karateodori”, Dokl. RAN, 434:3 (2010), 309–314
[8] Greshnov A. V., “O prilozhenii metodov gruppovogo analiza differentsialnykh uravnenii k nekotorym sistemam $C^1$-gladkikh vektornykh polei”, Sib. matem. zhurn., 50:1 (2009), 47–62 | MR | Zbl
[9] Selivanova S. V., “Kasatelnyi konus k regulyarnomu kvazimetricheskomu prostranstvu Karno–Karateodori”, Dokl. RAN, 425:5 (2009), 595–599 | MR | Zbl
[10] Selivanova S. V., “Kasatelnyi konus k kvazimetricheskomu prostranstvu s rastyazheniyami”, Sib. matem. zhurn., 51:2 (2010), 388–403 | MR | Zbl
[11] Vodopyanov S. K., Karmanova M. B., “Formula ploschadi dlya $C^1$-gladkikh kontaktnykh otobrazhenii mnogoobrazii Karno”, Dokl. RAN, 422:1 (2008), 15–20 | MR
[12] Karmanova M., Vodopyanov S., “An area formula for contact $C^1$-mappings of Carnot manifolds”, Complex Variables and Elliptic Equations, 55:1–3 (2010), 317–329 | DOI | MR | Zbl
[13] Vodopyanov S. K., Karmanova M. B., “Formula koploschadi dlya gladkikh kontaktnykh otobrazhenii mnogoobrazii Karno”, Dokl. RAN, 417:5 (2007), 583–588 | MR
[14] Karmanova M. B., “Formula ploschadi dlya lipshitsevykh otobrazhenii prostranstv Karno–Karateodori”, Dokl. RAN, 423:5 (2008), 603–608 | MR
[15] Karmanova M. B., “Kharakteristicheskoe mnozhestvo gladkikh kontaktnykh otobrazhenii prostranstv Karno–Karateodori”, Dokl. RAN, 425:3 (2009), 314–319 | MR | Zbl
[16] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. gos. ped. in-ta im. K. Libknekhta. Ser. fiz.-mat., 3:2 (1938), 83–94
[17] Chow W. L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1940/1941), 98–105 | DOI | MR
[18] Mitchell J., “On Carnot–Carathéodory metrics”, J. Differential Geometry, 21:1 (1985), 35–45 | MR | Zbl
[19] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[20] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields I: Basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR | Zbl