Generalized Jordan normal forms of a finite-dimensional linear operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 80-83
Cet article a éte moissonné depuis la source Math-Net.Ru
We define the Mal'tsev representation of a linear operator on a finite-dimensional linear space and establish the necessary and sufficient conditions for its existence. We obtain a second step generalization of theorems on generalized Jordan normal forms of the first and second kinds.
Keywords:
generalized Jordan normal form, finite-dimensional linear operator, characteristic polynomial, companion matrix, second step generalization.
@article{IVM_2011_5_a10,
author = {S. H. Dalalyan},
title = {Generalized {Jordan} normal forms of a~finite-dimensional linear operator},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {80--83},
year = {2011},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_5_a10/}
}
S. H. Dalalyan. Generalized Jordan normal forms of a finite-dimensional linear operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 80-83. http://geodesic.mathdoc.fr/item/IVM_2011_5_a10/
[1] Maltsev A. I., Osnovy lineinoi algebry, Nauka, M., 1975
[2] Dalalyan S. G., “Obobschennaya zhordanova matritsa lineinogo operatora”, Matem. zametki, 82:1 (2007), 27–35 | MR
[3] Dalalyan S. G., “Pryamoe dokazatelstvo teoremy ob obobschennoi zhordanovoi forme lineinogo operatora”, Izv. NAN RA, 43:5 (2008), 274–284 | MR
[4] Postnikov M. M., Lineinaya algebra i differentsialnaya geometriya, Nauka, M., 1979 | MR
[5] Dalalyan S. H., “Jordan–Postnikov normal form for a real linear operator”, Armenian J. Math., 1:2 (2008), 37–43 | MR