Connection of some bilevel and nonlinear optimization problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 99-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we reduce a quadratic-linear bilevel optimization problem with a guaranteed solution to a family of bilevel problems in the optimistic statement. Then we reduce the obtained bilevel problems to nonconvex one-level optimization problems for solving the latter by nonconvex optimization methods.
Keywords: bilevel optimization problems, guaranteed (pessimistic) solution, nonconvex optimization problems.
@article{IVM_2011_4_a9,
     author = {A. V. Malyshev and A. S. Strekalovsky},
     title = {Connection of some bilevel and nonlinear optimization problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {99--103},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_4_a9/}
}
TY  - JOUR
AU  - A. V. Malyshev
AU  - A. S. Strekalovsky
TI  - Connection of some bilevel and nonlinear optimization problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 99
EP  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_4_a9/
LA  - ru
ID  - IVM_2011_4_a9
ER  - 
%0 Journal Article
%A A. V. Malyshev
%A A. S. Strekalovsky
%T Connection of some bilevel and nonlinear optimization problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 99-103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_4_a9/
%G ru
%F IVM_2011_4_a9
A. V. Malyshev; A. S. Strekalovsky. Connection of some bilevel and nonlinear optimization problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 99-103. http://geodesic.mathdoc.fr/item/IVM_2011_4_a9/

[1] Germeier Yu. B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976 | MR | Zbl

[2] Gorelik V. A., Kononenko A. F., Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh, Radio i svyaz, M., 1982 | MR | Zbl

[3] Vasin A. A., Morozov V. V., Teoriya igr i modeli matematicheskoi ekonomiki, MAKS Press, M., 2005

[4] Dempe S., Foundations of bilevel programming, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002 | MR | Zbl

[5] Colson B., Marcotte P., Savard G., “An overview of bilevel optimization”, Ann. oper. res., 153:1 (2007), 235–256 | DOI | MR | Zbl

[6] Molodtsov D. A., “O reshenii odnogo klassa neantagonisticheskikh igr”, Zhurn. vychisl. matem. i matem. fiz., 16:6 (1976), 1451–1456 | MR | Zbl

[7] Molodtsov D. A., Fedorov V. V., “Approksimatsiya igr dvukh lits s peredachei informatsii”, Zhurn. vychisl. matem. i matem. fiziki, 13:6 (1973), 1469–1484 | MR | Zbl

[8] Tsoukalas A., Wiesemann W., Rustem B., “Global optimization of pessimistic bi-level problems”, Pardalos, Lectures on global optimization, 55, eds. Panos M. et al., Fields Institute Communications, 2009, 215–243 | MR | Zbl

[9] Vasilev F. P., Metody optimizatsii, Faktorial-press, M., 2002

[10] Horst R., Tuy H., Global optimization. Deterministic approaches, Springer-Verlag, Berlin, Germany, 1993 | MR

[11] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[12] Strekalovskii A. S., Orlov A. V., Bimatrichnye igry i bilineinoe programmirovanie, Fizmatlit, M., 2007

[13] Wets R. J.-B., “On the continuity of the value of a linear program and of related polyhedral-valued multifunctions”, Math. Program. Stud., 24:1 (1985), 14–29 | MR | Zbl

[14] Meyer R. R., Continuity properties of linear programs, Technical Report No 373, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 1979

[15] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[16] Strekalovskii A. S., Orlov A. V., Malyshev A. V., “Lokalnyi poisk v kvadratichno-lineinoi zadache dvukhurovnevogo programmirovaniya”, Sib. zhurn. vychisl. matem., 13:1 (2010), 75–88