Nearly K\"ahler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order~6
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 89-98
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the canonical $f$-structures on arbitrary naturally reductive homogeneous $\Phi$-spaces of order 6. We obtain the necessary and sufficient conditions under which these structures belong to classes of a generalized Hermitian geometry such as nearly Kähler and Hermitian $f$-structures.
Keywords:
naturally reductive space, generalized Hermitian geometry, homogeneous periodic $\Phi$-space, generalized symmetric space, canonical $f$-structure.
Mots-clés : invariant $f$-structure
Mots-clés : invariant $f$-structure
@article{IVM_2011_4_a8,
author = {A. S. Samsonov},
title = {Nearly {K\"ahler} and {Hermitian} $f$-structures on homogeneous $\Phi$-spaces of order~6},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {89--98},
publisher = {mathdoc},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_4_a8/}
}
TY - JOUR AU - A. S. Samsonov TI - Nearly K\"ahler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order~6 JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 89 EP - 98 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_4_a8/ LA - ru ID - IVM_2011_4_a8 ER -
A. S. Samsonov. Nearly K\"ahler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order~6. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 89-98. http://geodesic.mathdoc.fr/item/IVM_2011_4_a8/