Nearly K\"ahler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order~6
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 89-98

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the canonical $f$-structures on arbitrary naturally reductive homogeneous $\Phi$-spaces of order 6. We obtain the necessary and sufficient conditions under which these structures belong to classes of a generalized Hermitian geometry such as nearly Kähler and Hermitian $f$-structures.
Keywords: naturally reductive space, generalized Hermitian geometry, homogeneous periodic $\Phi$-space, generalized symmetric space, canonical $f$-structure.
Mots-clés : invariant $f$-structure
@article{IVM_2011_4_a8,
     author = {A. S. Samsonov},
     title = {Nearly {K\"ahler} and {Hermitian} $f$-structures on homogeneous $\Phi$-spaces of order~6},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--98},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_4_a8/}
}
TY  - JOUR
AU  - A. S. Samsonov
TI  - Nearly K\"ahler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order~6
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 89
EP  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_4_a8/
LA  - ru
ID  - IVM_2011_4_a8
ER  - 
%0 Journal Article
%A A. S. Samsonov
%T Nearly K\"ahler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order~6
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 89-98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_4_a8/
%G ru
%F IVM_2011_4_a8
A. S. Samsonov. Nearly K\"ahler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order~6. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 89-98. http://geodesic.mathdoc.fr/item/IVM_2011_4_a8/