Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_4_a1, author = {N. K. Bakirov}, title = {An asymptotically optimal cubic spline}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {8--14}, publisher = {mathdoc}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_4_a1/} }
N. K. Bakirov. An asymptotically optimal cubic spline. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 8-14. http://geodesic.mathdoc.fr/item/IVM_2011_4_a1/
[1] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl
[2] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR
[3] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[4] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR
[5] Hall C. A., Meyer W. W., “Optimal error bounds for cubic spline interpolation”, J. Approx. Theory, 16 (1976), 105–122 | DOI | MR | Zbl
[6] Miroshnichenko V. L., “O pogreshnosti priblizheniya interpolyatsionnymi mnogochlenami Lagranzha tretei stepeni”, Vychislitelnye sistemy, 106, Novosibirsk, 1984, 3–24 | MR | Zbl