A majorant criterion for the total preservation of global solvability of controlled functional operator equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 95-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear controlled functional operator equation in the Banach ideal space we prove a uniqueness theorem and also a theorem concerning sufficient conditions of global solvability for all controls from a pointwise bounded set. The second of these two theorems is proved subject to global solvability of some majorant equation for the control family mentioned above. The procedure of reduction of controlled initial boundary value problems to the equation under study is illustrated by examples.
Keywords: total preservation of global solvability, functional operator equation, uniqueness theorem.
Mots-clés : majorant equation
@article{IVM_2011_3_a9,
     author = {A. V. Chernov},
     title = {A majorant criterion for the total preservation of global solvability of controlled functional operator equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {95--107},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_3_a9/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - A majorant criterion for the total preservation of global solvability of controlled functional operator equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 95
EP  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_3_a9/
LA  - ru
ID  - IVM_2011_3_a9
ER  - 
%0 Journal Article
%A A. V. Chernov
%T A majorant criterion for the total preservation of global solvability of controlled functional operator equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 95-107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_3_a9/
%G ru
%F IVM_2011_3_a9
A. V. Chernov. A majorant criterion for the total preservation of global solvability of controlled functional operator equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 95-107. http://geodesic.mathdoc.fr/item/IVM_2011_3_a9/

[1] Sumin V. I., “Funktsionalno-operatornye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami”, DAN SSSR, 305:5 (1989), 1056–1059 | MR | Zbl

[2] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurn. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21 | MR | Zbl

[3] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, ch. I, NNGU, N. Novgorod, 1992

[4] Sumin V. I., “O funktsionalnykh volterrovykh uravneniyakh”, Izv. vuzov. Matematika, 1995, no. 9, 67–77 | MR | Zbl

[5] Sumin V. I., “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo. Ser. matem. model. i optim. uprav., 1998, no. 2, 138–151

[6] Sumin V. I., Chernov A. V., “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii volterrovykh operatornykh uravnenii”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo. Ser. matem. model. i optim. uprav., 2003, no. 1, 39–49

[7] Sumin V. I., Chernov A. V., Volterrovy operatornye uravneniya v banakhovykh prostranstvakh: ustoichivost suschestvovaniya globalnykh reshenii, VINITI, No 1198-V00, Nizhegorodsk. gos. un-t, 2000

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[9] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[10] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[11] Pugachev V. S., Lektsii po funktsionalnomu analizu, MAI, M., 1996

[12] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, GITTL, M., 1953

[13] Fedorov V. M., Kurs funktsionalnogo analiza, Lan, SPb., 2005