Solution of the spatial Tricomi problem for a~singular mixed-type equation by the method of integral equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 69-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a singular differential equation of mixed type in a bounded spatial domain of special form. We prove the existence and uniqueness of the solution to the Tricomi problem.
Keywords: method of integral equations, singular equation, Cauchy problem, Tricomi problem.
@article{IVM_2011_3_a7,
     author = {I. T. Nazipov},
     title = {Solution of the spatial {Tricomi} problem for a~singular mixed-type equation by the method of integral equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--85},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_3_a7/}
}
TY  - JOUR
AU  - I. T. Nazipov
TI  - Solution of the spatial Tricomi problem for a~singular mixed-type equation by the method of integral equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 69
EP  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_3_a7/
LA  - ru
ID  - IVM_2011_3_a7
ER  - 
%0 Journal Article
%A I. T. Nazipov
%T Solution of the spatial Tricomi problem for a~singular mixed-type equation by the method of integral equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 69-85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_3_a7/
%G ru
%F IVM_2011_3_a7
I. T. Nazipov. Solution of the spatial Tricomi problem for a~singular mixed-type equation by the method of integral equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 69-85. http://geodesic.mathdoc.fr/item/IVM_2011_3_a7/

[1] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973 | MR

[2] Vekua I. N., Obobschennye analiticheskie funktsii, GIFML, M., 1959 | MR

[3] M. Abramovich, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[4] Mukhlisov F. G., Gafurova S. M., “Potentsialy dlya nekotorykh singulyarnykh volnovykh uravnenii”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo instituta matematiki, Novosibirsk, 2002, 132–139 | Zbl

[5] Sneddon I., Preobrazovaniya Fure, In. lit., M., 1955

[6] Vatson G. N., Teoriya besselevykh funktsii, ch. 1, In. lit., M., 1949