Solution of the spatial Tricomi problem for a singular mixed-type equation by the method of integral equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 69-85
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a singular differential equation of mixed type in a bounded spatial domain of special form. We prove the existence and uniqueness of the solution to the Tricomi problem.
Keywords:
method of integral equations, singular equation, Cauchy problem, Tricomi problem.
@article{IVM_2011_3_a7,
author = {I. T. Nazipov},
title = {Solution of the spatial {Tricomi} problem for a~singular mixed-type equation by the method of integral equations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {69--85},
year = {2011},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_3_a7/}
}
TY - JOUR AU - I. T. Nazipov TI - Solution of the spatial Tricomi problem for a singular mixed-type equation by the method of integral equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 69 EP - 85 IS - 3 UR - http://geodesic.mathdoc.fr/item/IVM_2011_3_a7/ LA - ru ID - IVM_2011_3_a7 ER -
I. T. Nazipov. Solution of the spatial Tricomi problem for a singular mixed-type equation by the method of integral equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 69-85. http://geodesic.mathdoc.fr/item/IVM_2011_3_a7/
[1] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973 | MR
[2] Vekua I. N., Obobschennye analiticheskie funktsii, GIFML, M., 1959 | MR
[3] M. Abramovich, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR
[4] Mukhlisov F. G., Gafurova S. M., “Potentsialy dlya nekotorykh singulyarnykh volnovykh uravnenii”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo instituta matematiki, Novosibirsk, 2002, 132–139 | Zbl
[5] Sneddon I., Preobrazovaniya Fure, In. lit., M., 1955
[6] Vatson G. N., Teoriya besselevykh funktsii, ch. 1, In. lit., M., 1949