Degrees of asynchronously automaton transformations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 30-40
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we study the partially ordered set of degrees of asynchronous automata transformability. We prove that it contains a continuum of atoms, that every finite linearly ordered set is embeddable into that structure as an initial segment, and that the extending property of the embeddability of partially ordered finite sets is false.
Keywords:
degrees of asynchronous automata transformability, partially ordered sets, atom, initial segment, cover for degrees.
@article{IVM_2011_3_a3,
author = {N. N. Korneeva},
title = {Degrees of asynchronously automaton transformations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {30--40},
year = {2011},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_3_a3/}
}
N. N. Korneeva. Degrees of asynchronously automaton transformations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 30-40. http://geodesic.mathdoc.fr/item/IVM_2011_3_a3/
[1] Reina G., “Stepeni avtomatnykh preobrazovanii”, Kiberneticheskii sb., 14, 1977, 95–106
[2] Bairasheva V. R., “Strukturnye svoistva avtomatnykh preobrazovanii”, Izv. vuzov. Matematika, 1988, no. 7, 34–39 | MR | Zbl
[3] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, M., 1985 | MR | Zbl
[4] Lerman M., Degrees of unsolvability. Local and global theory, Perspectives in mathematical logic, Springer-Verlag, Berlin, 1983 | MR | Zbl