A multigrid method for weakly nonlinear elliptic equations of the second order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 10-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem for the weakly nonlinear elliptic equation of second order in divergence form. The convergence of the multigrid method for solving of this problem is proved. The method that we investigate is based on the application of conform finite elements and the Jacobi smoother procedure.
Keywords: weakly nonlinear elliptic equation, finite element method, multigrid iteration method.
@article{IVM_2011_3_a1,
     author = {M. M. Karchevskii},
     title = {A multigrid method for weakly nonlinear elliptic equations of the second order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--19},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_3_a1/}
}
TY  - JOUR
AU  - M. M. Karchevskii
TI  - A multigrid method for weakly nonlinear elliptic equations of the second order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 10
EP  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_3_a1/
LA  - ru
ID  - IVM_2011_3_a1
ER  - 
%0 Journal Article
%A M. M. Karchevskii
%T A multigrid method for weakly nonlinear elliptic equations of the second order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 10-19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_3_a1/
%G ru
%F IVM_2011_3_a1
M. M. Karchevskii. A multigrid method for weakly nonlinear elliptic equations of the second order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 10-19. http://geodesic.mathdoc.fr/item/IVM_2011_3_a1/

[1] Hackbusch W., Multi-grid methods and applications, Springer, Berlin, 1985 | Zbl

[2] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR

[3] Braess D., Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Springer, Berlin, 2003 | Zbl

[4] Olshanskii M. A., Lektsii i uprazhneniya po mnogosetochnym metodam, Fizmatlit, M., 2005 | Zbl

[5] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[6] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[7] Dautov R. Z., Karchevskii M. M., Vedenie v teoriyu metoda konechnykh elementov, Izd-vo KGU, Kazan, 2004

[8] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[9] Riss F., Sëkefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR