A multigrid method for weakly nonlinear elliptic equations of the second order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 10-19
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Dirichlet problem for the weakly nonlinear elliptic equation of second order in divergence form. The convergence of the multigrid method for solving of this problem is proved. The method that we investigate is based on the application of conform finite elements and the Jacobi smoother procedure.
Keywords:
weakly nonlinear elliptic equation, finite element method, multigrid iteration method.
@article{IVM_2011_3_a1,
author = {M. M. Karchevskii},
title = {A multigrid method for weakly nonlinear elliptic equations of the second order},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {10--19},
publisher = {mathdoc},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_3_a1/}
}
M. M. Karchevskii. A multigrid method for weakly nonlinear elliptic equations of the second order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 10-19. http://geodesic.mathdoc.fr/item/IVM_2011_3_a1/