The lower neighborhoods problem in a~space with closure and a~finitary theorem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2011), pp. 65-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study conditions under which all finitely generated subsets in a space (i.e., in a set with the closure property) have finite lower neighborhoods. We prove the finitary property of such a space. In addition, we state the Birchoff and Frink finatary theorem more precisely. Considered questions have applications to discrete functional systems with superpositions.
Keywords: space, closure property, closure property of finite character, completeness problem, expressibility problem, finitely generated classes, criterion system, lower neighborhood.
@article{IVM_2011_2_a6,
     author = {N. G. Parvatov},
     title = {The lower neighborhoods problem in a~space with closure and a~finitary theorem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--70},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_2_a6/}
}
TY  - JOUR
AU  - N. G. Parvatov
TI  - The lower neighborhoods problem in a~space with closure and a~finitary theorem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 65
EP  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_2_a6/
LA  - ru
ID  - IVM_2011_2_a6
ER  - 
%0 Journal Article
%A N. G. Parvatov
%T The lower neighborhoods problem in a~space with closure and a~finitary theorem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 65-70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_2_a6/
%G ru
%F IVM_2011_2_a6
N. G. Parvatov. The lower neighborhoods problem in a~space with closure and a~finitary theorem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2011), pp. 65-70. http://geodesic.mathdoc.fr/item/IVM_2011_2_a6/

[1] Kurosh A. G., Lektsii po obschei algebre, “Lan”, SPb., 2005

[2] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[3] Kuznetsov A. V., “Struktury s zamykaniem i kriterii funktsionalnoi polnoty”, UMN, 16:2 (1961), 201–202

[4] Birkhoff G., Frink O., “Representations of lattices by sets”, Trans. Amer. Math. Soc., 64 (1948), 299–316 | MR | Zbl

[5] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Tr. matem. in-ta im. V. A. Steklova, 51, 1958, 5–142 | MR | Zbl

[6] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986 | MR

[7] Yablonskii S. V., “O stroenii verkhnei okrestnosti dlya predikatno-opisuemykh klassov v $P_k$”, DAN SSSR, 218:2 (1974), 304–307

[8] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta. I”, Kibernetika, 1969, no. 3, 1–10 | MR | Zbl

[9] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta. II”, Kibernetika, 1969, no. 5, 1–9 | Zbl

[10] Maltsev A. I., Iterativnye algebry Posta, Izd-vo NGU, Novosibirsk, 1976 | MR

[11] Maltsev A. I., “Iterativnye algebry i mnogoobraziya Posta”, Algebra i logika, 5:2 (1966), 5–24 | MR

[12] Parvatov N. G., “Zamechaniya o konechnoi porozhdaemosti zamknutykh klassov”, Diskret. analiz i issled. operatsii. Ser. 1, 11:3 (2004), 32–47 | MR | Zbl

[13] Parvatov N. G., “Nasledstvennye sistemy diskretnykh funktsii”, Diskret. analiz i issled. operatsii. Ser. 2, 14:2 (2007), 76–91 | MR