One Goursat problem in a~Sobolev space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2011), pp. 54-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a hyperbolic-type differential equation with $L_p$-coefficients in a three-dimensional space. For this equation we study the Goursat problem with nonclassical boundary constraints not requiring matched conditions. We prove the equivalence of these boundary conditions to classical ones in the case when one seeks for a solution to the stated problem in an anisotropic space introduced by S. L. Sobolev. In addition, we prove the correct solvability of the Goursat problem by the method of integral equations.
Keywords: hyperbolic equation, three-dimensional Goursat problem, equations with $L_p$-coefficients.
@article{IVM_2011_2_a5,
     author = {I. G. Mamedov},
     title = {One {Goursat} problem in {a~Sobolev} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--64},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_2_a5/}
}
TY  - JOUR
AU  - I. G. Mamedov
TI  - One Goursat problem in a~Sobolev space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 54
EP  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_2_a5/
LA  - ru
ID  - IVM_2011_2_a5
ER  - 
%0 Journal Article
%A I. G. Mamedov
%T One Goursat problem in a~Sobolev space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 54-64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_2_a5/
%G ru
%F IVM_2011_2_a5
I. G. Mamedov. One Goursat problem in a~Sobolev space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2011), pp. 54-64. http://geodesic.mathdoc.fr/item/IVM_2011_2_a5/

[1] Zhegalov V. I., Utkina E. A., “Zadacha Gursa dlya odnogo trekhmernogo uravneniya so starshei proizvodnoi”, Izv. vuzov. Matematika, 2001, no. 11, 77–81 | MR | Zbl

[2] Utkina E. A., “Ob odnoi kraevoi zadache so smescheniyami v chetyrekhmernom prostranstve”, Izv. vuzov. Matematika, 2009, no. 4, 50–55 | MR

[3] Utkina E. A., “Ob odnoi trekhmernoi zadache Gursa”, Vestn. Samarsk. gos. tekh. un-ta. Ser. fiz.-mat. nauk, 2001, no. 12, 30–35

[4] Dzhokhadze O. M., “O trekhmernoi obobschennoi zadache Gursa dlya uravneniya tretego poryadka i svyazannye s nei obschie dvumernye integralnye uravneniya Volterry pervogo roda”, Differents. uravneniya, 42:3 (2006), 385–394 | MR | Zbl

[5] Midodashvili B., “Generalized Goursat problem for a spatial fourth order hyperbolic equation with dominated low terms”, Proc. A. Razmadze Math. Inst., 138, 2005, 43–54 | MR | Zbl

[6] Koscheeva O. A., “O postroenii funktsii Rimana dlya uravneniya Bianki v $n$-mernom prostranstve”, Izv. vuzov. Matematika, 2008, no. 9, 40–46 | MR | Zbl

[7] Berezin A. V., Vorontsov A. S., Markov M. B., Plyuschenkov B. D., “O vyvode i reshenii uravnenii Maksvella v zadachakh s zadannym volnovym frontom”, Matem. modelirovanie, 18:4 (2006), 43–60 | MR | Zbl

[8] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matematika, 1999, no. 10, 73–76 | MR | Zbl

[9] Mamedov I. G., “Fundamentalnoe reshenie zadachi Koshi, svyazannoi s psevdoparabolicheskim uravneniem chetvertogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 49:1 (2009), 99–110 | MR

[10] Kozhanov A. I., “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravnenii teploprovodnosti i Allera”, Differents. uravneniya, 40:6 (2004), 763–764 | MR

[11] Vodakhova V. A., “Kraevaya zadacha s nelokalnym usloviem A. M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya vlagoperenosa”, Differents. uravneniya, 18:2 (1982), 280–285 | MR | Zbl

[12] Shkhanukov M. Kh., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differents. uravneniya, 18:4 (1982), 689–699 | MR | Zbl

[13] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shkola, M., 1995 | Zbl

[14] Zhegalov V. I., “Trekhmernyi analog zadachi Gursa”, Neklassich. uravneniya i uravneniya smeshan. tipa, In-t matem. SO AN SSSR, Novosibirsk, 1990, 94–98 | MR | Zbl

[15] Zhegalov V. I., “O trekhmernoi funktsii Rimana”, Sib. matem. zhurn., 36:5 (1997), 1074–1079 | MR | Zbl

[16] Mamedov I. G., “On correct solvability of a problem with loaded boundary conditions for a fourth order pseudoparabolic equation”, Memoirs on Differ. Equ. and Math. Phys., 43, Georgian Academy of Sciences A. Razmadze Mathematical Institute, 2008, 107–118 | MR

[17] Mamedov I. G., “Generalization of multipoint boundary-value problems of Bitsadze–Samarski and Samarski–Ionkin type for fourth order loaded hyperbolic integro-differential equations and their operator generalization”, Proc. Inst. Math. and Mech., 23, 2005, 77–84 | MR | Zbl

[18] Mamedov I. G., “Integralnye predstavleniya funktsii v odnom anizotropnom prostranstve S. L. Soboleva s dominiruyuschei smeshannoi proizvodnoi”, Tezisy Mezhdunarodn. konf. po matem. i mekh., posvyaschennoi 50-letiyu in-ta matem. i mekhan. NAN Azerbaidzhana, Baku, 2009, 198–199

[19] Berezanskii Yu. M., Roitberg Ya. A., “Teorema o gomeomorfizmakh i funktsiya Grina dlya obschikh ellipticheskikh granichnykh zadach”, Ukr. matem. zhurn., 19:5 (1967), 3–32 | MR

[20] Zhitarashu N. V., “Teorema o polnom nabore izomorfizmov v $L_2$-teorii modelnykh nachalnykh parabolicheskikh kraevykh zadach”, Matem. issledovaniya, 88, 1986, 40–59 | MR | Zbl

[21] Mamedov I. G., “The local boundary value problem for an integro-differential equation”, Proc. Inst. Math. and Mech., 17, 2002, 96–101 | MR