Stability of $n$-dimensional extremal surfaces of revolution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2011), pp. 106-109

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider extremal surfaces of revolution of area-type functionals. For the latter we calculate the first and second variations. We prove stability and instability criteria for $n$-dimensional surfaces of revolution, based on their definition and in terms of special integrals.
Keywords: area-type functional, functional variation, extremal surface, stable (unstable) extremal surface.
@article{IVM_2011_2_a10,
     author = {N. M. Poluboyarova},
     title = {Stability of $n$-dimensional extremal surfaces of revolution},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {106--109},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_2_a10/}
}
TY  - JOUR
AU  - N. M. Poluboyarova
TI  - Stability of $n$-dimensional extremal surfaces of revolution
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 106
EP  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_2_a10/
LA  - ru
ID  - IVM_2011_2_a10
ER  - 
%0 Journal Article
%A N. M. Poluboyarova
%T Stability of $n$-dimensional extremal surfaces of revolution
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 106-109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_2_a10/
%G ru
%F IVM_2011_2_a10
N. M. Poluboyarova. Stability of $n$-dimensional extremal surfaces of revolution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2011), pp. 106-109. http://geodesic.mathdoc.fr/item/IVM_2011_2_a10/