Reconstruction of solutions to a~generalized Moisil--Teodorescu system in a~spatial domain from their values on a~part of the boundary
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 72-84
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the problem of reconstructing solutions to a generalized Moisil–Teodorescu system in a spatial domain from their values on a part of the domain boundary, i.e., the Cauchy problem. We construct an approximate solution to this problem with the help of the Carleman matrix method.
Keywords:
generalized Moisil–Teodorescu system, ill-posed problems, regularized solution, approximate solution
Mots-clés : Carleman matrix.
Mots-clés : Carleman matrix.
@article{IVM_2011_1_a6,
author = {E. N. Sattorov},
title = {Reconstruction of solutions to a~generalized {Moisil--Teodorescu} system in a~spatial domain from their values on a~part of the boundary},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {72--84},
publisher = {mathdoc},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_1_a6/}
}
TY - JOUR AU - E. N. Sattorov TI - Reconstruction of solutions to a~generalized Moisil--Teodorescu system in a~spatial domain from their values on a~part of the boundary JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 72 EP - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_1_a6/ LA - ru ID - IVM_2011_1_a6 ER -
%0 Journal Article %A E. N. Sattorov %T Reconstruction of solutions to a~generalized Moisil--Teodorescu system in a~spatial domain from their values on a~part of the boundary %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2011 %P 72-84 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2011_1_a6/ %G ru %F IVM_2011_1_a6
E. N. Sattorov. Reconstruction of solutions to a~generalized Moisil--Teodorescu system in a~spatial domain from their values on a~part of the boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 72-84. http://geodesic.mathdoc.fr/item/IVM_2011_1_a6/