Reconstruction of solutions to a~generalized Moisil--Teodorescu system in a~spatial domain from their values on a~part of the boundary
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 72-84

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of reconstructing solutions to a generalized Moisil–Teodorescu system in a spatial domain from their values on a part of the domain boundary, i.e., the Cauchy problem. We construct an approximate solution to this problem with the help of the Carleman matrix method.
Keywords: generalized Moisil–Teodorescu system, ill-posed problems, regularized solution, approximate solution
Mots-clés : Carleman matrix.
@article{IVM_2011_1_a6,
     author = {E. N. Sattorov},
     title = {Reconstruction of solutions to a~generalized {Moisil--Teodorescu} system in a~spatial domain from their values on a~part of the boundary},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--84},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_1_a6/}
}
TY  - JOUR
AU  - E. N. Sattorov
TI  - Reconstruction of solutions to a~generalized Moisil--Teodorescu system in a~spatial domain from their values on a~part of the boundary
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 72
EP  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_1_a6/
LA  - ru
ID  - IVM_2011_1_a6
ER  - 
%0 Journal Article
%A E. N. Sattorov
%T Reconstruction of solutions to a~generalized Moisil--Teodorescu system in a~spatial domain from their values on a~part of the boundary
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 72-84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_1_a6/
%G ru
%F IVM_2011_1_a6
E. N. Sattorov. Reconstruction of solutions to a~generalized Moisil--Teodorescu system in a~spatial domain from their values on a~part of the boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 72-84. http://geodesic.mathdoc.fr/item/IVM_2011_1_a6/