A multiparametric family of solutions to a~singular Volterra integral equation in a~Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 59-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a multiparametric set of solutions to a singular Volterra integral equation of the first kind with a sufficiently smooth kernel in the space of integrable functions whose values belong to a Banach space.
Keywords: integral equation, Banach space, operator pencil, spectrum.
@article{IVM_2011_1_a5,
     author = {I. V. Sapronov},
     title = {A multiparametric family of solutions to a~singular {Volterra} integral equation in {a~Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--71},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_1_a5/}
}
TY  - JOUR
AU  - I. V. Sapronov
TI  - A multiparametric family of solutions to a~singular Volterra integral equation in a~Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 59
EP  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_1_a5/
LA  - ru
ID  - IVM_2011_1_a5
ER  - 
%0 Journal Article
%A I. V. Sapronov
%T A multiparametric family of solutions to a~singular Volterra integral equation in a~Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 59-71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_1_a5/
%G ru
%F IVM_2011_1_a5
I. V. Sapronov. A multiparametric family of solutions to a~singular Volterra integral equation in a~Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 59-71. http://geodesic.mathdoc.fr/item/IVM_2011_1_a5/

[1] Magnitskii N. A., “O suschestvovanii mnogoparametricheskikh semeistv reshenii integralnogo uravneniya Volterra 1-go roda”, DAN SSSR, 235:4 (1977), 772–774 | MR

[2] Magnitskii N. A., “Mnogoparametricheskie semeistva reshenii integralnykh uravnenii Volterra”, DAN SSSR, 240:2 (1978), 268–271 | MR

[3] Magnitskii N. A., “Lineinye integralnye uravneniya Volterra $\mathrm I$ i $\mathrm{III}$ roda”, Zhurn. vychisl. matem. i matem. fiz., 19:4 (1979), 970–988 | MR

[4] Krein S. G., Sapronov I. V., “O polnote sistemy reshenii integralnogo uravneniya Volterra s osobennostyu”, Dokl. RAN, 355:4 (1997), 450–452 | MR

[5] Krein S. G., Sapronov I. V., “Ob integralnykh uravneniyakh Volterra s osobennostyami”, UMN, 50:4 (1995), 140

[6] Krein S. G., “Singular integral Volterra equations”, Abstracts of Internat. Congress of Math. (Zurich, August 3–11, 1994), 125

[7] Krein S. G., Sapronov I. V., “One class of solutions of Volterra equations with regular singularity”, Ukr. matem. zhurn., 49:3 (1997), 424–432 | MR | Zbl

[8] Sapronov I. V., “Ob odnom klasse reshenii uravneniya Volterra $\mathrm{II}$ roda s regulyarnoi osobennostyu v banakhovom prostranstve”, Izv. vuzov. Matematika, 2004, no. 6, 48–58 | MR | Zbl

[9] Sapronov I. V., “Mnogoparametricheskoe semeistvo reshenii integralnogo uravneniya Volterra s osobennostyu v banakhovom prostranstve”, Izv. vuzov. Matematika, 2005, no. 2, 81–83 | MR | Zbl

[10] Sapronov I. V., “Uravnenie Volterra s osobennostyu v banakhovom prostranstve”, Izv. vuzov. Matematika, 2007, no. 11, 45–55 | MR