A locally directionally maximin test for a~multidimensional parameter with order-restricted alternatives
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 39-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose the locally directionally maximin test which is a generalization of the locally most powerful test for the case of a multidimensional parameter. We show that for the two-dimensional Gaussian distribution the locally directionally maximin test is better than the likelihood ratio test in the sense of the local power. For locally asymptotically normal experiments we construct an asymptotic locally directionally maximin test.
Keywords: hypothesis testing, multidimensional parameter, order-restricted alternatives, locally directionally maximin test, locally most powerful test, likelihood ratio test, optimal linear test, locally asymptotically normal experiments.
@article{IVM_2011_1_a3,
     author = {P. A. Novikov},
     title = {A locally directionally maximin test for a~multidimensional parameter with order-restricted alternatives},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--48},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_1_a3/}
}
TY  - JOUR
AU  - P. A. Novikov
TI  - A locally directionally maximin test for a~multidimensional parameter with order-restricted alternatives
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 39
EP  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_1_a3/
LA  - ru
ID  - IVM_2011_1_a3
ER  - 
%0 Journal Article
%A P. A. Novikov
%T A locally directionally maximin test for a~multidimensional parameter with order-restricted alternatives
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 39-48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_1_a3/
%G ru
%F IVM_2011_1_a3
P. A. Novikov. A locally directionally maximin test for a~multidimensional parameter with order-restricted alternatives. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 39-48. http://geodesic.mathdoc.fr/item/IVM_2011_1_a3/

[1] Bahadur R. R., “An optimal property of the likelihood ratio statistic”, Proc. 5th Berkeley Symp. Math. Stat. Probab. (1965–1966), v. 1, University of California Press, Berkeley, 1967, 13–26 | MR | Zbl

[2] Schaafsma W., Smid L. J., “Most stringent somewhere most powerful tests against alternatives restricted by a number of linear inequalities”, Ann. Math. Stat., 37:5 (1966), 1161–1172 | DOI | MR | Zbl

[3] Perlman M. D., Wu L., “The emperor's new tests”, Stat. Sci., 14:4 (1999), 355–381 | MR | Zbl

[4] Berk R. H., “Locally most powerful sequential tests”, Ann. Stat., 3 (1975), 373–381 | DOI | MR | Zbl

[5] Leman E., Proverka statisticheskikh gipotez, Nauka, M., 1979 | MR

[6] Novikov A., Novikov P., “Locally most powerful sequential tests of a simple hypothesis vs. one-sided alternatives”, J. Stat. Plann. Inference, 140:3 (2010), 750–765 | DOI | MR | Zbl

[7] Shi N. Z., “Testing a normal mean vector against the alternative determined by a convex cone”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 41 (1987), 133–145 | MR | Zbl

[8] Shi N. Z., Kudo A., “The most stringent somewhere most powerful one-sided test of the multivariate normal mean”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 41 (1987), 37–44 | MR | Zbl

[9] Tsai M.-T. M., Sen P. K., “On the local optimality of optimal linear tests for restricted alternatives”, Stat. Sin., 3:1 (1993), 103–115 | MR | Zbl

[10] Le Cam L., “Locally asymptotically normal families of distributions”, Univ. California Publ. Stat., 3 (1960), 37–98 | MR | Zbl

[11] Novikov A., “Locally most powerful two-stage tests”, Proc. of the joint sess. of 7th Prague Symp. on Asymptotic Stat. and 15th Prague Conf. on Inf. Theory, Stat. Decision Func. and Random Proc. (Prague, August 21–25, 2006), Matfyzpress, Prague, 2006, 554–567

[12] van der Vaart A. W., Asymptotic statistics, Cambridge Univ. Press, Cambridge, 1998 | MR

[13] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979 | MR

[14] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[15] Rusas Dzh., Kontigualnost veroyatnostnykh mer. Primeneniya k statistike, Mir, M., 1975 | MR

[16] Borovkov A. A., Matematicheskaya statistika, Nauka, Novosibirsk, 1997 | MR | Zbl