Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_1_a3, author = {P. A. Novikov}, title = {A locally directionally maximin test for a~multidimensional parameter with order-restricted alternatives}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {39--48}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_1_a3/} }
TY - JOUR AU - P. A. Novikov TI - A locally directionally maximin test for a~multidimensional parameter with order-restricted alternatives JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 39 EP - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_1_a3/ LA - ru ID - IVM_2011_1_a3 ER -
P. A. Novikov. A locally directionally maximin test for a~multidimensional parameter with order-restricted alternatives. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 39-48. http://geodesic.mathdoc.fr/item/IVM_2011_1_a3/
[1] Bahadur R. R., “An optimal property of the likelihood ratio statistic”, Proc. 5th Berkeley Symp. Math. Stat. Probab. (1965–1966), v. 1, University of California Press, Berkeley, 1967, 13–26 | MR | Zbl
[2] Schaafsma W., Smid L. J., “Most stringent somewhere most powerful tests against alternatives restricted by a number of linear inequalities”, Ann. Math. Stat., 37:5 (1966), 1161–1172 | DOI | MR | Zbl
[3] Perlman M. D., Wu L., “The emperor's new tests”, Stat. Sci., 14:4 (1999), 355–381 | MR | Zbl
[4] Berk R. H., “Locally most powerful sequential tests”, Ann. Stat., 3 (1975), 373–381 | DOI | MR | Zbl
[5] Leman E., Proverka statisticheskikh gipotez, Nauka, M., 1979 | MR
[6] Novikov A., Novikov P., “Locally most powerful sequential tests of a simple hypothesis vs. one-sided alternatives”, J. Stat. Plann. Inference, 140:3 (2010), 750–765 | DOI | MR | Zbl
[7] Shi N. Z., “Testing a normal mean vector against the alternative determined by a convex cone”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 41 (1987), 133–145 | MR | Zbl
[8] Shi N. Z., Kudo A., “The most stringent somewhere most powerful one-sided test of the multivariate normal mean”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 41 (1987), 37–44 | MR | Zbl
[9] Tsai M.-T. M., Sen P. K., “On the local optimality of optimal linear tests for restricted alternatives”, Stat. Sin., 3:1 (1993), 103–115 | MR | Zbl
[10] Le Cam L., “Locally asymptotically normal families of distributions”, Univ. California Publ. Stat., 3 (1960), 37–98 | MR | Zbl
[11] Novikov A., “Locally most powerful two-stage tests”, Proc. of the joint sess. of 7th Prague Symp. on Asymptotic Stat. and 15th Prague Conf. on Inf. Theory, Stat. Decision Func. and Random Proc. (Prague, August 21–25, 2006), Matfyzpress, Prague, 2006, 554–567
[12] van der Vaart A. W., Asymptotic statistics, Cambridge Univ. Press, Cambridge, 1998 | MR
[13] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979 | MR
[14] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR
[15] Rusas Dzh., Kontigualnost veroyatnostnykh mer. Primeneniya k statistike, Mir, M., 1975 | MR
[16] Borovkov A. A., Matematicheskaya statistika, Nauka, Novosibirsk, 1997 | MR | Zbl