Construction of polynomials of a~special kind and examples of their application in the theory of power series and in the wavelet theory
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 24-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct polynomials of a special type. We consider examples of their application for studying the convergence of special power series, for determining the upper and lower Riesz bounds for a basis consisting of $B$-splines, and for studying the convergence of a sequence of Battle–Lemarié scaling functions.
Keywords: functional series, $B$-splines, Riesz basis, Battle–Lemarié scaling function, Shennon–Kotel'nikov function.
@article{IVM_2011_1_a2,
     author = {E. V. Mishchenko},
     title = {Construction of polynomials of a~special kind and examples of their application in the theory of power series and in the wavelet theory},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {24--38},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_1_a2/}
}
TY  - JOUR
AU  - E. V. Mishchenko
TI  - Construction of polynomials of a~special kind and examples of their application in the theory of power series and in the wavelet theory
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 24
EP  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_1_a2/
LA  - ru
ID  - IVM_2011_1_a2
ER  - 
%0 Journal Article
%A E. V. Mishchenko
%T Construction of polynomials of a~special kind and examples of their application in the theory of power series and in the wavelet theory
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 24-38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_1_a2/
%G ru
%F IVM_2011_1_a2
E. V. Mishchenko. Construction of polynomials of a~special kind and examples of their application in the theory of power series and in the wavelet theory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 24-38. http://geodesic.mathdoc.fr/item/IVM_2011_1_a2/

[1] Chui K., Vvedenie v veivlety, Mir, M., 2001

[2] Blatter K., Veivlet-analiz. Osnovy teorii, Tekhnosfera, M., 2004

[3] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[4] Eiler L., Vvedenie v analiz beskonechnykh, v. 1, Fizmatgiz, M., 1961

[5] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962

[6] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1964

[7] Mischenko E. V., “Ob odnom sluchae ispolzovaniya kvadraturnykh formul Soboleva v teorii veivletov”, Vestn. Novosib. gos. un-ta. Ser. matematika, mekhanika, informatika, 8:4 (2008), 39–49

[8] Dobeshi I., 10 lektsii po veivletam, RKhD, Moskva–Izhevsk, 2001

[9] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005