An algebra generated by multiplicative discrete convolution operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Banach algebra generated by multiplicative discrete convolution operators. We construct a symbolic calculus for this algebra and in terms of this calculus we describe criteria for the Noetherian property of operators and obtain a formula for their index.
Mots-clés : multiplicative discrete convolution, symbol
Keywords: Banach algebra, Noetherian property, index.
@article{IVM_2011_1_a0,
     author = {O. G. Avsyankin},
     title = {An algebra generated by multiplicative discrete convolution operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_1_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - An algebra generated by multiplicative discrete convolution operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_1_a0/
LA  - ru
ID  - IVM_2011_1_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T An algebra generated by multiplicative discrete convolution operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_1_a0/
%G ru
%F IVM_2011_1_a0
O. G. Avsyankin. An algebra generated by multiplicative discrete convolution operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2011_1_a0/

[1] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston–Basel–Berlin, 2001, 427 pp. | MR | Zbl

[2] Avsyankin O. G., Karapetyants N. K., “Mnogomernye integralnye operatory s odnorodnymi stepeni $(-n)$ yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl

[3] Avsyankin O. G., “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 73:4 (2003), 483–493 | MR | Zbl

[4] Avsyankin O. G., “O neterovosti mnogomernykh integralnykh operatorov s odnorodnymi i kvaziodnorodnymi yadrami”, Izv. vuzov. Matematika, 2006, no. 11, 3–10 | MR

[5] Avsyankin O. G., Deundyak V. M., “Ob algebre mnogomernykh integralnykh operatorov s odnorodnymi $SO(n)$-invariantnymi yadrami i radialno slabo ostsilliruyuschimi koeffitsientami”, Matem. zametki, 82:2 (2007), 163–176 | MR

[6] Erusalimskii Ya. M., “Neobkhodimye i dostatochnye usloviya neterovosti operatorov multiplikativnoi diskretnoi svertki”, Izv. Sev.-Kavkaz. nauch. tsentra vysshei shkoly. Estestv. nauki, 1973, no. 4, 105–107

[7] Erusalimskii Ya. M., Operatory multiplikativnoi diskretnoi svertki, Diss. $\dotsc$ kand. fiz.-matem. nauk, Rostov-na-Donu, 1976, 102 pp.

[8] Burbaki N., Spektralnaya teoriya, Mir, M., 1972, 183 pp. | MR | Zbl

[9] Danford N., Shvarts Dzh., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966, 1064 pp.

[10] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960, 315 pp. | MR