Approximations of almost periodic functions by entire ones
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 64-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a new proof of the well-known theorem by S. N. Bernstein, according to which among entire functions which give on $(-\infty,\infty)$ the best uniform approximation of order $\sigma$ of periodic functions there exists a trigonometric polynomial whose order does not exceed $\sigma$. We also prove an analog of this Bernstein theorem and an analog of the Jackson theorem for uniform almost periodic functions with an arbitrary spectrum.
Keywords: almost periodic function, trigonometric polynomial, Fourier factors, uniform approximation, entire function of finite order, modulus of continuity.
@article{IVM_2011_12_a7,
     author = {M. F. Timan and Yu. Kh. Khasanov},
     title = {Approximations of almost periodic functions by entire ones},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--70},
     publisher = {mathdoc},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_12_a7/}
}
TY  - JOUR
AU  - M. F. Timan
AU  - Yu. Kh. Khasanov
TI  - Approximations of almost periodic functions by entire ones
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 64
EP  - 70
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_12_a7/
LA  - ru
ID  - IVM_2011_12_a7
ER  - 
%0 Journal Article
%A M. F. Timan
%A Yu. Kh. Khasanov
%T Approximations of almost periodic functions by entire ones
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 64-70
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_12_a7/
%G ru
%F IVM_2011_12_a7
M. F. Timan; Yu. Kh. Khasanov. Approximations of almost periodic functions by entire ones. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 64-70. http://geodesic.mathdoc.fr/item/IVM_2011_12_a7/

[1] Bernshtein S. N., Sobranie sochinenii, v. 2, Izd-vo AN SSSR, M., 1954

[2] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhizdat, M.–L., 1947

[3] Bredikhina E. A., “K voprosu ob approksimatsii pochti periodicheskikh funktsii”, Sib. matem. zhurn., 5:4 (1964), 768–773 | Zbl

[4] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR