On an extreme point conjecture for concave functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 54-58
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathrm{CO}(A)$, $A\in(1,2]$, denote the family of concave univalent functions in the unit disk $\mathbb D$ with opening angle at infinity bounded by $\pi A$. We prove a weak form of a conjecture on the extreme points of $\mathrm{clco\,CO}(A)$ from the paper in Indian J. Math. 50, 339–349 (2008).
Keywords:
concave univalent functions, starlike functions, extreme points.
@article{IVM_2011_12_a5,
author = {S. Ponnusamy and K.-J. Wirths},
title = {On an extreme point conjecture for concave functions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {54--58},
publisher = {mathdoc},
number = {12},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_12_a5/}
}
S. Ponnusamy; K.-J. Wirths. On an extreme point conjecture for concave functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 54-58. http://geodesic.mathdoc.fr/item/IVM_2011_12_a5/