On an extreme point conjecture for concave functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 54-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathrm{CO}(A)$, $A\in(1,2]$, denote the family of concave univalent functions in the unit disk $\mathbb D$ with opening angle at infinity bounded by $\pi A$. We prove a weak form of a conjecture on the extreme points of $\mathrm{clco\,CO}(A)$ from the paper in Indian J. Math. 50, 339–349 (2008).
Keywords: concave univalent functions, starlike functions, extreme points.
@article{IVM_2011_12_a5,
     author = {S. Ponnusamy and K.-J. Wirths},
     title = {On an extreme point conjecture for concave functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--58},
     publisher = {mathdoc},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_12_a5/}
}
TY  - JOUR
AU  - S. Ponnusamy
AU  - K.-J. Wirths
TI  - On an extreme point conjecture for concave functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 54
EP  - 58
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_12_a5/
LA  - ru
ID  - IVM_2011_12_a5
ER  - 
%0 Journal Article
%A S. Ponnusamy
%A K.-J. Wirths
%T On an extreme point conjecture for concave functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 54-58
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_12_a5/
%G ru
%F IVM_2011_12_a5
S. Ponnusamy; K.-J. Wirths. On an extreme point conjecture for concave functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 54-58. http://geodesic.mathdoc.fr/item/IVM_2011_12_a5/

[1] Avkhadiev F. G., Wirths K.-J., “Concave schlicht functions with bounded opening angle at infinity”, Lobachevskii J. Math., 17 (2005), 3–10 | MR | Zbl

[2] Cruz L., Pommerenke Ch., “On concave univalent functions”, Complex Var. Elliptic Equ., 52:2–3 (2007), 153–159 | MR | Zbl

[3] Bhowmik B., Ponnusamy S., Wirths K.-J., “Unbounded convex polygons, Blaschke products and concave schlicht functions”, Indian J. Math., 50 (2008), 339–349 | MR | Zbl

[4] Wirths K.-J., “Julia's lemma and concave schlicht functions”, Quaest. Math., 28:1 (2005), 95–103 | DOI | MR | Zbl

[5] Schur I., “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 147 (1917), 205–232 | DOI

[6] Bhowmik B., Ponnusamy S., Wirths K.-J., “Characterization and the pre-Schwarzian norm estimate for concave univalent functions”, Monatsh. Math., 161:1 (2010), 59–75 | DOI | MR | Zbl

[7] Sheil-Small T., “Coefficients and integral means of some classes of analyic functions”, Proc. Amer. Math. Soc., 88 (1983), 275–282 | DOI | MR

[8] Duren P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1983 | MR | Zbl

[9] Goodman A. W., Univalent functions, v. I, II, Mariner Publishing Co., Tampa, Florida, 1983 | Zbl

[10] Miller S. S., Mocanu P. T., Differential subordinations. Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000 | MR | Zbl

[11] Marx A., “Untersuchungen über schlichte Abbildungen”, Math. Ann., 107 (1933), 40–67 | DOI | MR

[12] Strohhäcker E., “Beiträge zur Theorie der schlichten Funktionen”, Math. Z., 37 (1933), 356–380 | DOI | MR

[13] Avkhadiev F. G., Pommerenke Ch., Wirths K.-J., “Sharp inequalities for the coefficients of concave schlicht functions”, Comment. Math. Helv., 81 (2006), 801–807 | DOI | MR | Zbl

[14] Pommerenke Ch., Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, New York, 1992 | MR | Zbl