Generalized $SV$-rings of bounded index of nilpotency
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion under which all right modules over a ring of bounded index are weakly regular.
Keywords: weakly regular module, semiartinian ring, generalized $SV$-ring, regular ideal.
@article{IVM_2011_12_a0,
     author = {A. N. Abyzov},
     title = {Generalized $SV$-rings of bounded index of nilpotency},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_12_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - Generalized $SV$-rings of bounded index of nilpotency
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 14
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_12_a0/
LA  - ru
ID  - IVM_2011_12_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T Generalized $SV$-rings of bounded index of nilpotency
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-14
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_12_a0/
%G ru
%F IVM_2011_12_a0
A. N. Abyzov. Generalized $SV$-rings of bounded index of nilpotency. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2011_12_a0/

[1] Abyzov A. N., “Slabo regulyarnye moduli nad normalnymi koltsami”, Sib. matem. zhurn., 49:4 (2008), 721–738 | MR | Zbl

[2] Abyzov A. N., “Obobschennye $SV$-moduli”, Sib. matem. zhurn., 50:3 (2009), 481–488 | MR | Zbl

[3] Abyzov A. N., Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli yavlyayutsya $I_0$-modulyami. II”, Fundament. i prikl. matem., 14:2 (2008), 3–12 | MR | Zbl

[4] Abyzov A. N., Tuganbaev A. A., “Podmoduli i pryamye slagaemye”, Fundament. i prikl. matem., 14:6 (2008), 3–31 | MR

[5] Tuganbaev A. A., “Moduli s bolshim chislom pryamykh slagaemykh”, Fundament. i prikl. matem., 12:8 (2006), 233–241 | MR | Zbl

[6] Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli poluregulyarny”, Fundament. i prikl. matem., 13:2 (2007), 185–194 | MR | Zbl

[7] Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli yavlyayutsya $I_0$-modulyami”, Fundament. i prikl. matem., 13:5 (2007), 193–200 | MR | Zbl

[8] Tuganbaev A. A., “Koltsa bez beskonechnykh mnozhestv netsentralnykh ortogonalnykh idempotentov”, Fundament. i prikl. matem., 14:2 (2008), 207–221 | MR | Zbl

[9] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[10] Baccella G., “Semiartinian $V$-rings and semiartinian Von Neumann regular rings”, J. Algebra, 173:3 (1995), 587–612 | DOI | MR | Zbl

[11] Dung N. V., Smith P. F., “On semi-artinian $V$-modules”, J. Pure Appl. Algebra, 82:1 (1992), 27–37 | DOI | MR | Zbl

[12] Haily A., Rahnaoui H., “Some external characterizations of $SV$-rings and hereditary rings”, Int. J. Math. and Math. Sci., 2007 (2007), Article ID 84840 | MR | Zbl

[13] Silaev V. N., “O pravykh $SV$-koltsakh”, Fundament. i prikl. matem., 7:1 (2001), 121–129 | MR | Zbl

[14] Wisbauer R., Foundations of module and ring theory, Gordon and Breach Science Publ., Philadelphia, 1991 | MR | Zbl

[15] Goodearl K. R., Von Neumann regular rings, 2nd ed., Krieger Publ. Comp., Malabar, FL, 1991 | MR | Zbl

[16] Levitzki J., “On the structure of algebraic algebras and related rings”, Trans. Amer. Math. Soc., 74:3 (1953), 384–409 | DOI | MR | Zbl