Generalized $SV$-rings of bounded index of nilpotency
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion under which all right modules over a ring of bounded index are weakly regular.
Keywords: weakly regular module, semiartinian ring, generalized $SV$-ring, regular ideal.
@article{IVM_2011_12_a0,
     author = {A. N. Abyzov},
     title = {Generalized $SV$-rings of bounded index of nilpotency},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_12_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - Generalized $SV$-rings of bounded index of nilpotency
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 14
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_12_a0/
LA  - ru
ID  - IVM_2011_12_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T Generalized $SV$-rings of bounded index of nilpotency
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-14
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_12_a0/
%G ru
%F IVM_2011_12_a0
A. N. Abyzov. Generalized $SV$-rings of bounded index of nilpotency. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2011_12_a0/